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Abstract

A mathematical model for reversible polymers in steady and oscillating shear flows is

presented. Using a mean-field approach, the behavior of the polymer network is char-

acterized by a finitely extensible nonlinear elastic bead-spring model that stochasti-

cally transitions between dumbbell states to represent attachments, detachments and

loops. An efficient parallel scheme for computation on GPUs utilizes populations of

over a million dumbbells to characterize steady, large and small amplitude oscilla-

tory shear (SAOS) flows in Brownian dynamics simulations. In steady-shear a novel

attachment species transition function enables shear thickening and shear thinning

by the adjustment of either attachment or detachment parameters. Three species

simulations show the inclusion of loops modifies the strength of these nonlinear flow

responses. In SAOS simulations, three species simulations show an increase in dy-

namic moduli at higher frequencies not present in two species models. Two approaches

for a looped segment transitioning to dangling are explored, and the choice found to

have substantial impact on the effect of adding a third species. Pipkin diagrams are

also generated using large amplitude oscillatory flows.
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Chapter 1

Introduction

Associative polymer models for viscoelastic fluids have held the attention of the sci-

entific community for over 50 years. Interest remains high due to the numerous

applications of transient polymers in industrial applications where control over their

rheological behavior is crucial for achieving ideal performance. Transient polymers

also serve important roles in the biomedical community as the material for soft sen-

sors, drug carriers and in tissue engineering, just to name a few [2, 54, 24]. They are

categorized as associative polymers due to the reversible cross-links of their molecu-

lar network that give rise to unique characteristics such as shear-thinning and shear-

thickening.

The work of this dissertation focuses on the rheological behavior of tri-block poly-

mers above the micelle concentration [42, 45, 34] . Tri-block polymers are defined

as molecular chains that consist of a B-A-B configuration where the B-Blocks are

hydrophobic and the A-blocks are hydrophilic. Above a certain concentration, in-

teractions with the solvent cause the polymer chains to form micelles. At higher

concentrations, thermodynamic vibration and flow forces then lead to bridging be-

tween micelles as the hydrophobic ends break out of their micelle cores and form

bridges by embedding their hydrophobic ends in other micelle cores. Conversely, the

same forces cause the destruction of bridges as polymer ends disassociate from either

core. These mechanical behaviors are responsible for the dynamic characteristics of

the polymer and is what leads scientists to classify them as telechelic or reversible

associative polymers.

1
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Since Green and Tobolsky [19] numerous models have been presented in an at-

tempt to capture the characteristic behaviors of telechelic polymer networks [66, 65,

55, 62, 63, 64, 48, 49, 50] . An early history of constitutive models is well covered

in the introduction of Tripathi et al. [51] and a thorough discussion in Wang and

Larson [56] provides a recent update. Of present interest is the work done by Vac-

caro and Marrucci in [53]. Based on theory and simulation results from van den

Brule and Hoogerbrugge [8] , they model this system as finitely extensible dumbbells

separated into two groups, active and dangling. Each segment has its own charac-

teristics and thus effects the polymer network structure differently. In simulation,

dumbbells stochastically switch between states. Representing each state as a sin-

gle Fokker-Planck equation creates a system of equations which can be solved using

closure approximations. A systematic evaluation of this approach is undertaken by

[38]. On the other hand, Hernández Cifre [22] takes a Brownian Dynamics approach.

Instead of Fokker-Plank equations, a Langevin equation describes the micro-scale dy-

namics of each dumbbell type. Macro-scale terms, such as the fluid stress, are then

determined by averaging over many realizations -typically ensembles of 5000 dumb-

bells. In this way, Hernández Cifre shows the viscosity profile of associative polymers

in simple shear flow can be captured without the closure approximations needed in

other approaches.

In a more recent evolution of Vaccaro and Marrucci’s approach, Sing et al [44].

adds a third looped dumbbell species. Through analysis of their three species Fokker

-Plank system, they conclude that the inclusion of loops causes non-monotonic shear

thickening and shear thinning at lower stresses. However, this type of simulation

maybe more difficult to adapt to complex scenarios [32]. In this light, a Brownian

Dynamics micro-macro scale approach provides a useful alternative.

A molecular dynamics model by Baljon et al. simulates telechelic polymers in

small amplitude oscillatory shear flow and produces nonlinear stress responses [3,

2
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60]. Their model is an extension of earlier work by Kremer and Grest [20, 29] where

dynamics are driven by temperature and inter-chain interactions via energy poten-

tials. The model by Baljon et al. adds the ability for endgroups on each chain to

associate and detach from each other via Monte Carlo Dynamics. They simulate

systems of 100 polymer chains with eight beads each. However, as they consider

pairwise interactions between chains in the system, they are limited in the number

of chains and beads they can model efficiently. To generate rheological data from

SAOS flow, they attach polymer chains to an oscillating boundary and rely on strain

rate-frequency superposition [61] to reconstruct a complete flow curve. While the

complexities of this model make this admirable work, they also underscore the need

for an efficient and straight forward method.

Although interest in elastic dumbbell models is high, the application of Brown-

ian Dynamics models to associating polymers has not kept pace with advances in

experimental techniques used to measure their rheology. In recent decades, small

amplitude oscillatory shear (SAOS) has become the canonical method for rheological

measurements [25]. Moreover, the developing field of non-linear rheology also relies

on large amplitude oscillatory shear (LAOS) fluid flows that are more complex than

steady shear and require additional sensitivity. However, few Brownian Dynamics

models have yet to demonstrate capability in capturing rheological characteristics in

this type of flow. The goal of this work is to present a micro-macro scale simulation

capable of modelling associative polymers in steady, and small to large oscillatory

shear flows. To this aim we present an extension of the mean-field method set forth

in Hernández Cifre et al. and apply it to the more dynamic shear flows used in modern

rheological measures. The parallel computation scheme allows for an efficient simu-

lation of over a million dumbbells in the system and produces full flow curves with

little stochastic noise or the need for additional frequency extension techniques. The

inclusion of a third looping dumbbell species also creates a more dynamic non-linear

3



www.manaraa.com

fluid response and results in a wider range of dynamic moduli. Finally, the additional

fidelity makes it possible to simulate large amplitude oscillatory shear measurements

for a wide range of frequencies and flow rates.
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Chapter 2

Model Description

Our model builds off the approach taken by Hernández Cifre in [22] by adding a

third species of dumbbells and adopting modifications for efficient parallel computa-

tion. The key differences are the use of nonlinear elastic finitely extendable (FENE)

dumbbells, reworked species transition probability functions, including an adapta-

tion of Sing’s method for incorporating looped dumbbells, and the use of a constant

instantaneous lifetime for dumbbell chains in the network. The most important fea-

ture of the model is the Mean-Field approach. In this approach, explicit positions

for dumbbells and their connections are not tracked; forgoing direct tracking of the

network topology. Instead, each dumbbell follows a stochastic differential equation

according to its species type that also varies stochastically according to prescribed

rules based on the length. These characteristics allow parallel computation of each

dumbbell configuration and thus result in efficient modelling of large populations.

2.1 Block Copolymers

Our modelling approach is based on the structure of BAB block copolymers in solvent.

BAB block copolymers are made of long molecule chains with a backbone of two

segments, B and A, that show differing preference for the solvent.

For example, for a BAB copolymer in water, the A block is hydrophobic and the

B block is hydrophilic.

At concentrations above the critical micelle concentration (CMC), the varying

preference for water causes the formation of a core of A-type blocks as they attempt to
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Figure 2.1: Cartoon of BAB-block copolymer. Hydrophobic and hydrophilic blocks
in the polymer chain respond to the solvent by forming micelles.

avoid contact with the surrounding fluid. Meanwhile, because the B-type blocks prefer

water, they are pushed outward forming a corona around the core. The resulting

structure resembles a flower in two dimensions and is called a micelle. Figure 2.1

shows a cartoon representation of this description. Micelle formation is well studied

for a variety of polymers [42, 45, 34, 4].

Precise measures at the molecular level for block copolymers can be challenging to

obtain. In the case of the telechelic polymer, hydrophobically modified ethoxylated

urethane (HEUR) with a backbone of polyethylene oxide (PEO), there are several

factors which affect aggregate size, such as temperature, concentration and molecular

weight. In one study by Kadam et al. using polyethylene oxide as the center of a

triblock micelle forming polymer [26], aggregate sizes had a radius of gyration of that
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Table 2.1: Experimental measurements for triblock polymers containing PEO.
All measurements where taken at 20◦C. aData from Kadam et al. [26]. bData
from Zhao et al. [67] with reported relative error: Mw, ±5%; Rh, ±2%;
Rg, ±8%.

Copolymer Concentration Mw (g/mol) Rh (nm) Rg (nm)
PMEA-PEO-PMEAa 1 g/L 3.60× 105 13 -
PMEA-PEO-PMEAa 2 g/L 3.80× 105 14 -
PMEA-PEO-PMEAa 4 g/L 5.90× 105 17 -
PMEA-PEO-PMEAa 8 g/L 4.61× 106 55 65
PMEA-PEO-PMEAa 10 g/L 1.48× 107 74 103
PMEA-PEO-PMEAa 12 g/L 2.85× 107 95 144
PCL-PEO-PCLb 2.74× 10−6 g/mL 4.51× 106 52 39
PCL-PEO-PCLb 2.74× 10−6 g/mL 1.04× 107 53 49
PCL-PEO-PCLb 2.74× 10−6 g/mL 3.03× 107 56 54

ranged from 65 nm to 144 nm while the hydrodynamic radius ranged from 13 nm

to 95 nm. In another study by Zhao et al. they find radius of the formed micelles

shrink as the temperature increases [67]. Moreover, they measure a radius of gyration

from 54 nm to 39 nm and a hydrodynamic radius from 56 nm to 52 nm with errors

of ±5%, ±8% and ±2% respectively. The table 2.1 contains complete measurements

from these works.

In concentrations above the CMC, networks form as micelles come into increasing

contact with one another and entangle. The focus of our model is at these concentra-

tions, where micelle network attachment and detachment play a role in the mechanic

response of the fluid. The progression of our model representation is illustrated in

figure 2.2. On the far left is an example polymer network from Nykänen et al. [37].

The center illustration shows a cartoon version, with micelles displaying three fea-

tures: 1) entanglements with other micelles; 2) dangling polymer chains, where one

end is embedded in the micelle core and the other end explores the surrounding fluid;

and 3) looping chains where both ends embed in the same micelle core. In our model,

these three types of segments are classified as active (bridges), dangling and looped

species types. On the right is a network diagram of the cartoon. In this diagram
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Figure 2.2: Visual representation of the model conceptualization process; from ex-
perimental form (left), cartoon representation (center), to network diagram (right).
Left. Image of a block copolymer hydrogel sample from Nykänen et al. [37]. Center.
Cartoon representation of a polymer network showing fully formed micelles connected
by polymer chains, as well as dangling and looped segments. Right. Network diagram
containing the three species types used in the model: active (red), dangling (green),
and looped (blue).

each segment is clearly represented and color coded by species. Each segment is rep-

resented as a dumbbell with two endpoints connected by a spring. The endpoints are

considering sticking points, where attaching and detaching to other nodes is possible.

Endpoints can be micelle cores or the end of a free dangling polymer chain.

Our model will focus on tracking segment configuration dynamics and species

type. Because fluid stress is a force per unit of area, and we consider all the parts

of our network to be within sufficient proximity to one another to avoid unique con-

siderations, we make the modelling assumption that is it not necessary to track the

position of each segment in the network in order to resolve overall fluid stress in

the cell. Using this, we approximate network attachments, detachments and looping

with stochastic functions of the dumbbell length. Therefore the main mathematical

concerns of our approach are an equation to track segment configuration (length and

orientation but not position) and species transition probability functions. This focus

allows for each segment to be evolved over time independently of the behavior of

other dumbbells and results in gains in computational efficiency through parallel cal-

culation. However, it also presents a challenging conceptual issue —a network model

with no position.

There are several other modelling assumptions worth mentioning. First, hydrody-
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Figure 2.3: Elastic dumbbell. Dumbbells represent each, endpoint-edge-endpoint,
segment of the polymer network. Notice that Q tracks only the configuration (length
and orientation) and not the location of the segment.

namic interactions with the solvent are neglected. Second, we assume a free draining

polymer network. That is, the dumbbells themselves do not impede the movement of

the Brownian particles. Third, there are no boundaries. Therefore the model assumes

the fluid cell being simulated is a sufficient distance from any wall, so that special

boundary conditions are a non-factor.

2.2 Dumbbell Evolution Equation

The stochastic differential equation (SDE) describing the evolution of each dumbbell

is,

Q(t+∆t) = Q(t)+κ·Q(t)∆t−
(
ζi + ζj
ζiζj

)
F (Q)∆t+

√√√√2kBT
(
ζi + ζj
ζiζj

)
∆W (t). (2.1)

Here Q is a vector the represents the end-to-end length and angle (or configura-

tion) of a single dumbbell, κ is the fluid velocity tensor, F (Q) is the FENE spring

force, kB is the Boltzmann constant and T is the temperature. The term W (t) is

a Weiner process representing Brownian motion as a result of particle-solvent inter-
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actions at the ends of the dumbbell. Equations for active and dangling species type

differ by the assigned drag terms. For active dumbbells, ζi = ζj = ζnode and for

dangling dumbbells, ζi = ζnode and ζj = ζfree. Dumbbells in the looped state are

considered to have negligible interactions with the fluid, and thus their configuration

does not change until they return to a dangling state.

2.3 Attached, Dangling and Looped Transition Probability

Functions

Three species types represent different states of a polymer chain under consideration.

Attached dumbbells represent a BAB polymer chain where each sticky end (A-block)

is attached to separate micelle cores. The dangling type describes a polymer chain,

where a single sticky end is embedded in a micelle core, and rest of the polymer

chain dangles freely in the solution. A looped type describes the state where the

polymer chain has both ends embedded in its own micelle core; looping back upon

itself. Each dumbbell evaluates its species type once per simulated time step, and

changes according to the map,

Active↔ Dangling↔ Looped.

The active to dangling species transition models the situation where a polymer

chain bridging two micelle cores separates from one core. A dangling to active tran-

sition represents the free end of a dangling chain embedding into the micelle core of

another (unspecified) micelle core. The dangling to looped transition occurs when the

free end of a polymer chain loops back upon itself. The looped to dangling transition

indicates a single end of a looped chain breaking out of the micelle core to dangle

freely in the solvent.

In simulation, each dumbbell species type follows a prescribed evolution equation

according to the characteristics of its current state. After evolving orientation and
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length forward in time, transitions between species states occur according to dynamics

unique to each type and are determined via stochastic comparison. First, a transi-

tion probability function that may depend on the length of the dumbbell, determines

the likelihood of a transition occurring. Then random variables are generated and

compared to the values from the transition functions. If the transition probability

function value is higher than the generated uniform random variable, a species tran-

sition occurs. The following subsections describe the transition probability functions

in greater detail.

2.3.1 Active Dumbbells

The active-to-dangling (A→ D) state transition function models the process of two

micelles separating through the detachment of a molecular chain. The approach taken

here arose out of a combined analysis of the methods used in Hernández Cifre et al.

[22] and Sing et al. [44, 43] In Hernández Cifre et al., they model the attractive

force between the chemical bonds as a potential well with the shape of a parabola.

By balancing the energy to escape the well with the FENE force of the spring, they

derive the expression given here in nondimensional form,

PA→D = 1− exp
− 2∆t

τfund exp(U0) exp
(
− d2

U0

Q2

(1−Q2/Q2
max)2

)
 . (2.2)

On the other hand, Sing et al, cites Bell’s law [5] for the rate of dissociation. This

approach is derived from reaction rates and the lifetime of a bond from the kinetic

theory of solids [68]. Together Bell’s approach relates the rate of bond breakage to

the strength of the force between potential bonding sites. In Sing et al, the rate of

dissociation is presented as,

Rbridge dissociation = kd exp
(
B

∣∣∣∣∣ Q

1−Q2/Q2
max

∣∣∣∣∣
)

(2.3)

11
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By converting Eq. 2.3 to a probability and rearranging Eq. 2.2 we can compare

the two probability transition functions as,

1− exp
[
−kd exp

(
B

∣∣∣∣∣ Q

1−Q2/Q2
max

∣∣∣∣∣
)

∆t
]

(2.4)

and,

= 1− exp
[
− 2
τfund exp(U0) exp

(
d2

U0

Q2

(1−Q2/Q2
max)2

)
∆t
]

(2.5)

for the Sing et al. and Hernández Cifre et al. approaches, respectively. In this

form we can see that these two approaches are similar but irreconcilable due to the

squared FENE force dependence in Eq. 2.5 versus a non-squared dependence in Eq.

2.4.

For our model we chose to go with the expression from Sing et al. The dimension-

less characteristic bond length, B, was set to 0.0325 to create transition probability

curves similar to those using the approach and default parameters in Hernández Cifre

et al. The parameter β is used to adjust overall rates of dissociation. Thus the prob-

ability transition function used in our simulations is,

PA→D = 1− exp
[
−β exp

(
B

∣∣∣∣∣ Q

1−Q2/Q2
max

∣∣∣∣∣
)

∆t
]
. (2.6)

2.3.2 Dangling Dumbbells

Dangling dumbbells can transition to the active (A) or (L) looped types. Due to

this added complexity, a multistep process was used to determine the proper form of

each transition probability function. First, transition probability functions for the two

transitions, dangling-to-active and dangling-to-looped were considered independently.

An asterisk, *, is used to denote these functions. Then these probabilities were

combined using a two random variable scheme.
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Attached Endpoint

Dangling End of
Polymer Chain

Q

Approximate
Explored Area

Figure 2.4: Diagram of a polymer chain with one attached end, and one free or
dangling end. We model the area explored by the dangling end as the volume of a
cone, thus leading to a αQ2 dependence on the length in the probability of attachment.

Considering only the behavior of a dangling dumbbell transitioning to an active

dumbbell we write,

P ∗D→A = 1− exp
[
− αQ2

1−Q2/Q2
max

∆t
]
. (2.7)

With this construction the probability of association increases with the length of

the dumbbell. In addition, it follows the argument in Hernández Cifre et al. that

states this probability should relate to the space explored by a sticky end as it retracts

through the solvent. However, because the volume explored by the retracting dangling

chain should grow with the same proportionality of the volume of a cone with height

the length of the chain, αQ2 is used for the numerator. Indeed, figure 2.4 illustrates

this point.

To simulate the species transition from dangling to looped, a novel probability

transition function is proposed. Considering the dynamics of micelle network forma-

tion, it is reasonable to assume dumbbells whose lengths tend toward zero have a

higher likelihood of becoming loops, while longer dumbbells should have a very low

probability of looping. This is because chains dangling from a micelle core should

13



www.manaraa.com

be more likely to self-embed forming loops if they are close to their core. Moreover,

these characteristics align with features of the dangling-to-looped approach used in

Sing et al. The probability transition function for this is,

P ∗D→L = 1− exp
[
− χQ(Qmax −Q)2

1− (Qmax −Q)2/Q2
max

∆t
]
. (2.8)

This formulation for the transition from a dangling to looped species closely mir-

rors the dangling-to-active transition making shorter dumbbells more likely to form

loops and stretched dumbbells very unlikely to loop. Exactly mirroring the dangling-

to-active transition calls for asymptotic growth as a dumbbell tends towards zero

length. This was found to create too many loops in simulation and limited the dy-

namic behavior of the modelled polymer. To address this, the additional Q term

was added. This term smooths the growth of the probability transition function as

it tends towards zero and allows the maximum value to be adjusted through the pa-

rameter χ. We found that this construction allows for a wide range in the persistent

number of loops present in simulations.

To accommodate all the possible outcomes for a dangling dumbbell we combine

these two probability functions in the following scheme. Two random variables, X1

and X2 are drawn at each time step. Then they are compared to the computed

probability values, P ∗D→A and P ∗D→L in the following way:

If P ∗D→A > X1 ∧ P ∗D→L < X2, then dangling species becomes active,

If P ∗D→A < X1 ∧ P ∗D→L > X2, then dangling species becomes looped,

else, remain dangling.

Formulating the approach in this way has the benefit of maintaining the underlying

physical equations driving the creation of loops and active dumbbells segments.
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2.3.3 Looped Dumbbells

Dumbbells in the looped state are given special consideration. In the looped state,

the dumbbell does not change length or orientation as interactions with the fluid

are considered negligibly small. Therefore, the only dynamic considered is the ther-

modynamically driven bond breakage that leads to a change in state to a dangling

dumbbell (L → D). Considering this, the transition probability function Eq. 2.6

describing bond detachment, simplifies to the expression,

PL→D = 1− exp [−β∆t] . (2.9)

The parameter β governs the rate of dissociation of a polymer chain from a micelle

core and is the same parameter used in the probability transition function for the

transition from active to dangling. This construction matches the approach taken in

Sing et al.

2.3.4 Additional Species Transitions Representations

A visual representation is helpful for understanding how the transition probability

functions affect each dumbbell. Figure 2.5 provides an illustration of the probability

functions for α = 1.7, β = 8.7, χ = 1.0, Qmax = 33.3334 and ∆t = 5e − 3. In

each plot, the x-axis is the spring length and the y-axis represents the probability

of the shaded transition occurring. For example, looking at the center plot we see a

dangling dumbbell with length 5, has roughly a 20% chance off becoming looped, a

70% chance of staying dangling, and a 10% chance of attaching to become active.

A single left stochastic matrix [18] can be used to represent all the species changes.

First consider the following simplified representation of the above transition proba-

bility functions. Notice, that every term but the third, depends on the length of the

dumbbell Q.
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Figure 2.5: Transition probability functions. Top. Probability of transitioning from
an active to dangling species type. Center. Probability of transitioning from a dan-
gling species to either an active or looped type. Bottom. Probability of transitioning
from a looped to dangling species type. All. Parameters used for the plots are α = 1.7,
β = 8.7, χ = 1.0, Qmax = 33.3334 and ∆t = 5e− 3.
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α(Q) = αQ2

1−Q2/Q2
max

(2.10)

βA(Q) = β exp
(

0.0325
∣∣∣∣∣ Q

1−Q2/Q2
max

∣∣∣∣∣
)

(2.11)

βL(Q) = β (2.12)

χ(Q) = χQ(Qmax −Q)2

1− (Qmax −Q)2/Q2
max

(2.13)

Putting these expressions into a 3× 3 matrix, we have

Active Dangling Looped

Active e−βA∆t
(
1− e−α∆t

)
e−χ∆t 0

Dangling 1− e−βA∆t

(
1− e−α∆t

) (
1− e−χ∆t

)
+e−χ∆te−α∆t

1− e−βL∆t

Looped 0 e−α∆t
(
1− e−χ∆t

)
e−βL∆t

The species along the top row indicate the current state, the column down the

left side represents a transition to the named species. By the laws of probability, each

column should sum to 1. For active and looped dumbbells, this is straight forward.

For dangling dumbbells,

(
1− e−α∆t

)
e−χ∆t +

(
1− e−α∆t

) (
1− e−χ∆t

)
+ e−χ∆te−α∆t + e−α∆t

(
1− e−χ∆t

)
= e−χ∆t − e−(α+χ)∆t + 1− e−α∆t − e−χ∆t + 2e−(α+χ)∆t + e−α∆t − e−(α+χ)∆t

= 1.

2.4 Additional Equations

The drag on an attached segment should differ from a segment with one end dan-

gling freely. The proportionality constant, Z, serves this purpose. In contrast with
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Hernández Cifre, we make no connection between state of the overall dumbbell pop-

ulation and this term as they found it had little influence on the viscosity curve.

The approach we present here simplifies computational complexity and maximizes

the potential for parallel computation. The result is,

ζnode = Zζfree. (2.14)

The total stress from the polymer chain network on the solvent is determined by

Kramer’s type expression [6]. Looped dumbbells are not considered to contribute

to the fluid stress because they do not carry tension in the looped the state [28].

However, their presence effects the number density of the chains in the solution, and

therefore they are included in the count for the total number of dumbbells, N , in

the simulation. This is in line with the approach taken by Sing et al. in [44]. The

stress contribution σ is nondimensionalized by kBTn, where n is the number density

of polymer chains [15]. In non-dimensional form it is given by,

σij = − 2
N

 ∑
active

F (Qi)Qj +
∑

dangling

F (Qi)Qj

 . (2.15)

We follow viscosity, η and the first normal stress coefficient, Ψ1, as defined in [35]:

η = σxy
γ̇

Ψ1 = σxx − σyy
γ̇2 .

2.4.1 Nondimensionalization

Equations are made nondimensional by the variables:

t̃ = t
ζfree
4H Q̃ = Q

√
2kBT
H

σ̃ = nkBTσ.
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Table 2.2: Model Parameters: Description and Values.

Parameter Description Simulated Values

α Alters probability of attachment
in the dangling to active species
transition.

0.1-1000

β Alters probability of detachment,
from active to dangling, and
looped to dangling species.

0.1-100

χ Alters probability of looping at-
tachment in dangling to looped
species transition.

0.01-0.00015

B Dimensionless characteristic
bond length.

0.0325

Z Balances the difference in drag
between active and dangling
dumbbells.

30

Qmax Maximum dumbbell length. 33.3334

ζfree Drag of a free dumbbell. 12

H Spring Constant. 3

2.5 Model Parameters

Although our model interpretation is straight forward it contains many parameters.

Many of these parameters are representative of physical quantities and their values

can thus be guided by measurement [23]. In this work, we focus on the default values

used in Hernández Cifre [22] for Z, Qmax, ζfree and H. The choice of the value of

B is discussed above in section 2.3.1. Some parameters, such as those modifying the

attachment detachment and looping probabilities, are more abstract in nature and

are explored in our results. Descriptions and values for each parameter are listed in

table 2.2.
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Chapter 3

Simulation Method

3.1 Brief Overview

Each dumbbell’s configuration and state are computed in parallel on graphical pro-

cessing units (GPUs). A semi-implicit first order method evolves the stochastic dif-

ferential equation 2.1 ensuring that dumbbells do not exceed their maximum length

[40]. At each time step, dumbbell configurations evolve according the SDE and species

type, probability transition values are computed and species types are altered appro-

priately. At regular intervals the configuration and type are used to calculate the

fluid stress response. All simulations presented in this work contain 1024000 dumb-

bells. Simulations are run until a steady state is achieved which was determined by a

combination of visual and analytical inspection. For simple shear flow, the final value

is a mean over the steady state time period. For oscillatory flows, viscous and elastic

coefficients are fitted to the steady state period using MATLAB’s fit functions. For

large amplitude oscillatory flow, the software MITLaos [17] is used to determine the

dynamic moduli and higher harmonics present in nonlinear rheological measurements.

Based on the Fourier transform spectrum, a technique described in [58, 59, 27], valid

harmonics are identified from stochastic noise, and higher harmonics are filtered to

improve clarity.
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3.2 Coding for the High Performance Computing Environment

The programming scope of this project and fits squarely into the realm of Big Data.

Big Data is defined as, “Information assets characterized by such a high volume, ve-

locity and variety to require specific technology and analytical methods for its trans-

formation into value”[13]. In this project, over one million dumbbells are simulated

to provide clear results from the stochastic differential equations describing them;

fulfilling the volume requirement. Second, in order to do this efficiently, parallel com-

putation is written in CUDA C. This involves developing an understanding of the

memory and executable hardware architecture [11]. Moreover, the scale necessitates

moving to a high performance computing (HPC) cluster where GPU accelerators and

file storage systems can process and store the large amounts of data produced. These

are the specific technological requirements. Finally, a second set of MATLAB codes

is used to analyze the data and produce useful information. Together these tools

form the complex workflow necessary for Big Data. Indeed, the results achieved in

this project are not currently possible with routine coding methods and computation

platforms.

The simulation code consists of about 3400 lines of CUDA C. The cuRAND library

is used to generate random numbers on the GPU [36]. Beyond this however, no special

packages or libraries are employed. The main execution code follows a macro-micro

loop design, macro for the CPU and micro for the GPU (See Figure 3.1). The main

execution loop is as follows: Code on the CPU sends a full set of the dumbbell data

to the GPU to be evolved for a set number of time steps; The GPU evolves each

dumbbell the set amount of times in parallel and then returns the data back to the

CPU; The new configuration is recorded by the CPU and the old is updated; The

loop repeats until the desired time is reached. At the end of the simulation only

the configurations recorded on the CPU are written to the csv file for output. The

upshot of this arrangement is that it avoids sending large amounts of data between
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the CPU and GPU allowing for efficient computation. However, the downside is that

configuration changes on the GPU are not recorded.

In certain configurations the simulation code can quickly produce large amount

of data. At 20 bytes of data per dumbbell per time step its easy to see how 102400

dumbbells quickly add-up over the course of simulations which have an average of

108 time steps (That’s 2048T of data from a single run). The macro-micro loop itself

helps to limit the data size, however, it alone is not enough. In order to manage and

derive information from the output much of the analysis revolves around metadata,

such as the calculated stress, average lengths, average angle variance, etc. These

results are stored in the output csv file. When the configuration of every dumbbell

is needed, this is done at specific intervals and over time periods of interest, such as

the steady state. This type of data was used to create figures such as the dumbbell

configuration histograms in figure 4.15 for example. It is also possible to track every

change of a single dumbbell as is displayed in figure 4.16. Enabling these features

results in a bin file which is produced concurrently with the csv output.

Simulations where run in batches on multi-code nodes with Nvidia Tesla M2090,

K80 and P100 GPU Accelerators. Since the memory footprint on the GPU is small,

and the CPU core is usually fully utilized multiple simulations were run simultane-

ously depending on the environment. The table 3.1 lists the CPU-GPU combinations

used in this work. Simulations were found to run significantly faster when writing to

local storage. For certain file systems, not writing to local storage was enough to slow

down a large cluster, and therefore care should be exercised if this is the case. Com-

putation time ranges from mins to days depending on simulation parameters, with

low flow rate steady shear flow and high frequency SAOS requiring the most time.

Improving code performance beyond usable runtimes was not the primary concern of

this work, and thus there are many areas for improvement.
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Figure 3.1: Code flow chart. The design of the code can be divided into CPU (left) and GPU (right) parts. Sending data between
the CPU and GPU is a time intensive operation. The loop on the GPU represents a single thread and is run independently for
each of the 1024000 dumbbells in the simulation. The term ‘RNG’ refers to random number generator.
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Table 3.1: Table of computation environments and run combinations. The
code has a small memory footprint on the GPU but fully utilizes the CPU
core. Therefore, to saturate the hardware, multiple runs were executed
simultaneously.

CPU GPU Number of Simultane-
ous Simulations

Intel Xeon X5660
@2.8GHz

Nvidia Tesla M2090 1

Intel Xeon E5-2620 v3
@2.4GHz

Nvidia Tesla K80 4 (2 per GPU core)

Intel Xeon E5-2680 v4
@2.4Ghz

Nvidia Tesla P100 3

3.3 Strain Simulations

The main body of this work is concerned with modelling two small strain experiments

used in rheology; both of which are well established [31, 6, 35]. The first is steady

shear flow. In steady shear flow simulations, a shear rate proportional to the vertical

displacement imposes a force on each dumbbell. This simulates strain imposed via

drag on the polymer network by the fluid flow that results from a sliding top plate

moving in a single direction. For each steady shear flow simulation, the system is

allowed to equilibrate at zero shear rate flow for 100s of non-dimensional time. Then

the shear rate is imposed at the prescribed rate. This protocol was followed for each

run although in practice it was not shown to affect the steady state stress response.

The measured stress values used in the simulations are the result of an average taken

over the final period of the steady state that was verified visually; typically the

last 10% of simulated flow time. Figure 3.2 shows the output from a steady shear

simulation.

The second simulated type of flow is small amplitude oscillatory shear (SAOS).
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Figure 3.2: Plot of a typical steady shear flow simulation. The left axis shows the
stress response, σxy, versus time. The right axis indicates the fraction of each species
type. The system is allowed to equilibrate with zero flow until t = 100 then the flow
is imposed. The dashed line indicates the steady state stress value measured as an
average over the last 10% of simulated flow time.

Small amplitude oscillatory shear differs from steady shear in that imposed strain

varies sinusoidally in time. This imposed strain is written as γ = γ0 sin(ωt), where ω

is in radians per second. In these simulations, the viscoelastic moduli are calculated

from the stress over a range of oscillation frequencies ω for a fixed strain amplitude,

γ0. The stress response is decomposed into in-phase and out-of-phase components,

G′(ω) and G′′(ω), the storage or elastic modulus and the loss or viscous modulus,

respectively. In our simulations, these coefficients are determined by fitting the steady

state period (typically the last 25%) to the expression, G′γ0 sin(ωt) + G′′γ0 cos(ωt),

using the default fit routine in MATLAB. Figure 3.3 illustrates the performance of

the curve fitting. The value of γ0 is often described vaguely as “small enough” or

γ0 � 1 [31]. Based on Ewoldt [16], we use γ0 = 0.5, and verify visually that the ratio
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Figure 3.3: Figure illustrating the fitting of the coefficients of G′γ0 sin(ωt) +
G′′γ0 cos(ωt) to the stress response of a SAOS simulation. The top plot shows the
simulated stress response. The red curve is the fitted expression over the steady state
period. The lower plot indicates the error between each data point and the computed
curve.

of the third harmonic to the first is much less than one (e3/e1 � 1, in their notation)

to ensure simulations are within the linear regime and thus qualify as small strain.

This was visually verified for each SAOS simulation output using the plot seen in

figure 3.4 that shows the Fourier transform of the stress from the steady state of a

SAOS simulation.

Large amplitude oscillatory shear (LAOS) simulations differ from SAOS in only

that the strain amplitude γ0 is increased. For large enough γ0 the stress signature
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Figure 3.4: Plot showing the Fourier transform of the stress response from a SAOS
simulation. The single peak at 1 indicates there is only a clear first harmonic present
and thus this response should be considered within the linear regime.

contains multiple harmonics indicating entrance into the nonlinear viscoelastic regime

[16]. A plot showing the multiple harmonics can be see in figure 3.5. A short MAT-

LAB routine automatically identifies the largest harmonic and feeds the information

to the MITLaos software where higher harmonics are filtered to smooth the output.

The yellow circles indicate harmonics identified by the routine. Output from the

steady state of LAOS simulations is analyzed via the MITLaos software [17]. MIT-

Laos was used to construct the viscous and elastic Lissajous-Bowditch curves used in

the Pipkin diagrams in figures 4.19 and 4.20 in section 4.4.
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Figure 3.5: Plot showing the Fourier transform of the simulated stress response from
a LAOS plot. The multiple peaks indicate additional harmonics present in the stress
response. Harmonics automatically identified by the MATLAB routine are identified
with a yellow circle.

3.4 Uncertainty Quantification

In stochastic simulation, it is best practice to indicate uncertainty in simulated val-

ues and provide an explanation of the “error bar” representation employed [21, 7].

However, the simulated values in the results section of this work do not contain error

bars. The reason is that in our statistic simulations, the variation between runs was

small enough that including representations of the uncertainty did not add to under-

standing in the presentation. The purpose of this section is therefore to accurately

represent the uncertainty in our simulated values with analysis and figures purposed

for the task.

Two example analyses of uncertainty in simulated values are included here; one
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Figure 3.6: Figure showing the stress response from 100 steady shear simulations.
The largest plot shows the full runtime of a collection of 100 simulations. Insert A
is an enlarged view of the transient period where variations are largest. Insert B is
a plot of the 95% confidence interval. These areas where enlarged to highlight the
variation between simulations.

for steady shear and one for SAOS flow. Each example includes 100 runs with ran-

domly generated initial states. The initial state consists of x and y lengths of each

dumbbell randomly chosen from a normal distribution. Dumbbells assigned lengths

longer than the maximum were reinitialized. Time was used to seed random number

generation and efforts were made to avoid running multiple simulations at the same

time. Confidence intervals (95%) were computed via established methods [21] and

are illustrated in figures 3.6 and 3.7. It is important to note that while transient be-

havior is examined in these figures, only steady state measures were used elsewhere

in this work. The uncertainty of these measures as it pertains to these two examples

is described in table 3.2.
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Figure 3.7: Figure showing the stress response from 100 SAOS simulations. The
largest plot shows the full runtime of a collection of 100 simulations. Insert A is an
enlarged view of a selected time period. Insert B is a plot of the 95% confidence
interval. These areas where enlarged to highlight the variation between simulations.

By examining the figures and data above we can draw a few conclusions about

the significance of simulated values from the model. Transient behavior was included

in these examples because it is expected to show larger variations since the mod-

elled system is out of equilibrium. However, both figures show that every simulation

captured important features such as ringing in steady shear, decreasing stress am-

plitude in SAOS, and similar start times to the steady state period. Moreover, the

quantitative difference in these features was small, indicating that there is very good

agreement between multiple runs of the same simulation parameters. For the more

robust steady state measures used in the results section, such as stress in the xy

direction (σxy) and G′ and G′′, variation between runs was even more diminished.

The small size of the confidence intervals indicates that computed values are close to
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Table 3.2: Uncertainty in the steady state values from examples seen in figures 3.6 and 3.7.

Simulation Computed Quantity Mean 95% Confidence Interval Standard Deviation Figure
Steady Shear σxy 40.1427 ±0.0062 0.0313 3.6

SAOS G′ 0.0250 ±8.5167× 10−6 4.2922× 10−5 3.7
SAOS G′′ 0.0053 ±7.7415× 10−6 3.9015× 10−5 3.7
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what would be expected in large systems of polymer chains. The standard deviation

gives an estimate of how close we can expect the computed value from a single run

to be to the mean of multiple runs. Indeed, the standard deviations for these values

are small enough that we can be confident in the qualitative conclusions drawn from

single runs in this work.
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Chapter 4

Results

This chapters presents results obtained using the model. This includes two and three

species simulations for steady shear flows. A comparison of SAOS output with two

and three species. In addition, two methods for determining the configuration of

a dangling dumbbell after being looped are compared. Finally, results from LAOS

simulations are showcased.

4.1 Simple Shear

Simple shear experiments introduce a deformation flow parallel to the bottom of the

fluid cell at a steady rate. This type of flow is also referred to as steady shear, sliding

plate or Couette shearing flow. The velocity gradient is prescribed as,

∇v =

 0 0

γ̇0 0

 (4.1)

In the presentation herein, we set κ = (∇v)T . For each experiment the system is

given time to equilibrate before flow starts. Then viscosity and the first normal stress

coefficient are measured once a steady state is achieved.

Complex fluids can be categorized by their fluid response. In pure viscous fluids,

the stress response decreases with increasing flow rate. This phenomena is called shear

thinning. In an elastic material, the stress response increases with increasing shear

deformation. Fluids that increases their stress response with increasing shear rate

are called shear-thickening. The focus of this work is simulating the fluid response of
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a viscoelastic fluid, where a combination of shear thinning and shear thickening can

be present.

Another method of categorizing complex fluids is to separate Newtonian and non-

Newtonian. Two important characteristics of the latter fluid are; the fluid’s viscosity

does no increase proportionally with the rate of shear strain, and a positive normal

stress coefficient. The non-Newtonian category incorporates viscoelastic fluids that

exhibit shear thinning or shear thickening, and thus could be used to describe the

scope of fluids simulated by this model as well.

In simple shear experiments, parameters describing individual dumbbell properties

adopt the default values listed in table 2.2. Parameters the alter the species transition

behavior (α, β, χ) were varied, and viscosity was examined.

4.1.1 Two Species Simple Shear

In a two species simulation, containing only active and dangling dumbbells, we find

that shear thickening or shear thinning behavior can be altered by modifying either

or both attachment or detachment mechanics. Consider the plot for α = 10 and

β = 10 in the center of Figure 4.1. By increasing the probability of attachment so

that α = 100 and β = 10, we can see from the run in the left plot, that the amount of

shear thickening decreases and the amount of shear thinning increases. Conversely,

if we increase the detachment parameter so that α = 10 and β = 100, we find in the

plot on the right that the amount of shear thickening increases. These two parameters

can be combined into a ratio which determines the fluid response as show in 4.1.

Our simulations indicate that shear thickening and shear thinning behavior is

caused by the interplay of attached and dangling network segments. These are shown

in the species fraction plots in 4.2. At low flow rates when number attachments in

the network is high relative to the number of dangling, less shear thickening occurs

as the flow rate increases. This is because the length of active dumbbells increases
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Figure 4.1: Viscosity η and First Normal Stress Coefficient Ψ1 for steady shear flow
simulations of a two species model. Each plot contains a single α/β ratio.

Figure 4.2: Species fractions in shear flow. Plots show the steady state species fraction
of each type, active and dangling, for the simple shear simulations in 4.1.

proportionately with the flow rate. Therefore, when a large number of segments are

already attached, their length grows and few species changes occur. The period of

shear thinning that follows, is the result of length growing and dumbbells detaching

to a dangling state where they are more likely to reduce length. This behavior is the

result of having a detachment probability that depends on the length of the dumbbell.

Shear thickening is achieved in the model by our choice of attachment probability.
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For simulations where the ratio of alpha to beta is near 1, there are a number of

dangling segments available to attach at low flow rates. As flow rates increase, they

lengthen and as a result of the form of the dangling-to-attached probability function,

increasing numbers of dangling dumbbells change species to active and remain in an

extended state. When the flow rate increases to the point where active dumbbells

extend and break, transitioning back to dangling dumbbells, shear thinning appears.

A short mathematical analysis provides some insight into the α/β ratio control

over shear thickening and shear thinning. To more easily make sense of the complex

dynamics, let F (Q) be an arbitrary function of the spring length and consider the

simplified representation of the transition probability functions:

PDangling→Active = 1− exp (−αF (Q) ∆t) (4.2)

PActive→Dangling = 1− exp (−βF (Q) ∆t) (4.3)

For each length of spring Q the function of F (Q) has a fixed value. After choosing

values for α, β and ∆t the value of the transition probability functions are fixed as well.

In this way, the probability of being in one state or the other is set. Now, because

the dumbbells transition from active to dangling and dangling to active, altering

either α or β, shifts this preference. Therefore, the ratio α
β
describes the relative

difference in preference at any dumbbell length. Considering all the dumbbells in the

simulation we see the ratios influences the species fractions of active and dangling

species which thus influences the amount of shear thinning and shear thickening seen

in the simulations.

Traditional network theory has placed a lot of focus on the attachment and de-

tachment probabilities [51]. Many approaches are based on the Leonard-Jones electric

potential in bond forming and breaking. Indeed, in Hernández Cifre, the association

energy affects both the attachment and detachment of dumbbells. In our approach,
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we posit that the probability of dumbbell attachment has more to do with the phys-

ical space explored by an unattached end, then the electro-chemical potential of the

bond to be formed. For detachment, we reason that overcoming the energy barrier to

break the bond is a greater factor. In combination, we show that these two mechanics

are each individually able to influence shear-thinning and shear-thickening behavior

in steady shear flow. By delinking these processes, we give our model the ability

to better simulate tunable polymer experiments that modify bond attachment and

detachment independently, such as in several recent works [26, 10].

4.1.2 Three Species Simple Shear

In three species simple shear simulations we incorporate a third dumbbell species

—loops. This looped species is assumed to have negligible interaction with the fluid

flow and does not contribute to the stress. Including the third species, however,

modifies the amount of shear thickening and shear thinning and thus breaks the α/β

ratio symmetry seen in the two species simulations.

In three species simulations we find the behavior of the viscosity and the first

normal stress coefficient is controlled by the two ratios, α/β and χ/β. In figure 4.3,

these correspond with changes in the vertical direction and changes in the horizon-

tal direction respectively. We see that increasing the looping ratio, χ/β, leads to

increased shear thickening when there are a moderate number of active dumbbells.

The number of active dumbbells in the simulation increases with a larger attachment

ratio, α/β, and leads to less shear thickening and more shear thinning. At low flow

rates, a higher fraction of active dumbbells increases the fluid stress response. As

flow rates increase, the amount of shear thickening depends on how many loops are

in the system. When flow rates increase over a rate of γ̇ > 1.8 all simulations show

shear thinning.

By examining figure 4.3 we can identify several trends in the model. Starting
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Figure 4.3: Three species steady shear flow simulations. Plot shows steady state viscosity η and first normal coefficient Ψ1,
organized by attachment, α/β, and looping, β/χ, ratios. The α/β ratio increases in the upward direction and the β/χ ratio
increases left to right.
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with the plot in the top left, there are a large amount of bridged segments and

fewer dangling and looped. We could say that this is a polymer network with many

interconnections and few loops. When flow rates increase the model shows shear-

thinning with flow increase. For the plot in lower right, we have a large number of

loops occurring in the network. The model shows a much reduced stress response, but

still has shear thickening followed by shear thinning. Indeed, we see that as the flow

rate increases, there are more dangling and active chains. This would correspond to

the loops breaking out of the micelle formation and dangling or forming connections.

Then because the rate of attachment is low, the amount of stress from dangling and

active dumbbells extending with the fluid does not increase linearly.

On the other two extremes, we have the example in the top right. This shows

a large number of attachments and loops in the network, but few dangling dumb-

bells that would form connections. In this case, any loops are quickly transitioning

to active dumbbells as the flow increases. The result is a shear-thinning response.

In the lower left, we see that the looped dumbbells enhanced the shear-thickening

response. Without loops, the increase in flow rate and shift between active and dan-

gling dumbbells is enough to generate shear thickening. When loops are added, they

lower the fluid stress at low flow rates even further. Then like dangling dumbbells,

the number of loops drops due to fluid extension. In contrast to dangling dumbbells,

loops however do not again increase as chains extend and break in high rate flow.

Three Species Dissymmetry

In the two species model presented in 4.1.1, the fluid response was controlled by the

ratio α/β. This is also true for χ/β when only looping and dangling species are

present, as is shown in figure 4.4. However, when these two are combined into one

three species model the symmetries are broken. The diagram in figure 4.5 provides a

visual guide to the dynamics that lead to this phenomenon. Each circle in the diagram
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Figure 4.4: Two species, dangling and looped, steady shear flow simulations. Plots
show the viscosity η and first normal stress coefficient Ψ1. Each plot shows the result
of three data sets with the same χ/β ratio.
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1− exp(−αF (Q)∆t)
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Figure 4.5: Dumbbell species transition diagram. Equations are simplified in that
F (Q) represents different functions of the length of a dumbbell, Q. Each ellipse
represents a species type. Each arrow represents a species transition and is labeled
with the parameter that affects the transition probability. In the two species model,
only the area above the dashed line is considered. In the three-species model, the
entire diagram is considered.

represents a species type, dumbbell transitions are indicated by arrows between them,

the equations on the side are simplified representations of the transition probabilities

functions and the parameter is the one associated with each transition.

In steady state, we found species fractions remain constant. Therefore, there are
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a balanced number of dumbbells entering and exiting each species type. In the two

species model, this balance exists between the active and dangling dumbbells and

thus between the parameters α and β. This is also true for χ and β. When the

two two species models are combined into a three model, because species fractions

are constant in the steady state, there must be a balance between all three types.

Since the dumbbells are now distributed among three types, and dangling dumbbells

transition to active or loops, the original balances are upset.

These effects can be clearly seen by comparing the two species model to the

behavior of the active and dangling dumbbells in the three species model as is done

in figure refDissymmetry. Each plot in the figure has the same alpha-beta ratio.

The top row does not contain loops, and therefore the flow curves show very similar

behavior. Introducing loops with χ = 0.001 immediately breaks the symmetry across

the second row. This is because the beta-chi ratios are different.

By construction, only dangling dumbbells form loops in the simulation. This

behavior means that the inclusion of loops has different effects on the fluid response

depending on the fraction of dangling dumbbells in the simulation. Therefore, when

flow rates are low dumbbells are less extended and we find an abundance of dangling

dumbbells. Because there are more dangling dumbbells at shorter lengths, there are

more dumbbells that will become looped. The presence of a higher fraction of loops

in the simulation leads to lower overall fluid stresses. As the flow rate increases,

dumbbells extend and fewer dangling dumbbells become looped. The overall effect is

that shear thickening is more pronounced when loops are included.

In general, we find that by adjusting the likelihood of bridging in relation to

the likelihood of disassociating via the α/β ratio, it is possible to control the fluid

response. In addition, the ratio between the likelihood of looping and breaking out of

the looped state enhances the nonlinear response. In this sense, in a polymer where

loops are largely present, and endgroups are reluctant to disassociate we should see
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Figure 4.6: Transition function parameter dissymmetry in the three species model.
Steady shear plots of viscous and first normal stress coefficient on the left axis. On
the right axis, are species fractions. Plots on the first row include only active and
dangling species. Plots on the second row also include loops.
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greater shear thickening and shear thinning. On the other hand, in a polymer network

consisting of mostly bridged networks and less loops, we expect to see higher stresses

at low flow rates, followed by less shear thickening before giving way to shear thinning.

Our results compliment the conclusions Sing et al. [44] achieved with their

reaction-diffusion Smoluchowski approach. In their work they conclude that the in-

clusion of loops enhances non-monotonic fluid responses. In examining results across

our two and three species models, we too see that it is possible to generate non-

monotonic behavior with only two species. However, adding loops enhances the

non-monotonicities while lowering overall stress. These effects are most visible when

the probability of attachment is not high.

4.2 Small Amplitude Oscillatory Shear

Small amplitude oscillatory shear (SAOS) measures the stress response to an oscil-

lating shear flow to separate out-of-phase viscous and in-phase elastic forces. The

shear flow is kept small in order to measure the properties the material without large

disruptions to the structure [31]. In this type of simulation, the direction of shear flow

is constantly changing at increasingly rapid rates, therefore the stress response has

a larger dependence on the dumbbell orientation. In this section we compare SAOS

simulations for two and three species models. Figure 4.7 illustrates the characteristics

of each simulation across several metrics. In addition, figure 4.8 represents species

fractions in terms of only the species that contribute to the fluid response, thereby

providing insight into the effects that including the third looping species has on the

behavior of the other two.

At low frequency oscillations, dumbbell extension in active and dangling types

is similar among the two simulations implying that loops do not on average affect

dumbbell length at low frequencies. Instead, the looping dynamic prevents a portion

of the dumbbells from contributing to the overall stress calculation. This results in
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Figure 4.7: Three measurements from a two species and three species SAOS simulation. (Left) Dynamic moduli plots indicate
the strength of the network response, and describe elastic-like and viscous-like behavior of the fluid. (Center) Species fraction
separated by state. (Right) Average normed length of dumbbell segments.
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smaller values for both dynamic moduli in the three-species model. The effect is more

dramatic at lower frequencies because the dangling-to-looped transition probability

is significantly higher than the dangling-to-active transition probability at shorter

lengths. Thus, the correspondence with a drop in the fraction of active dumbbells

among species contributing to the stress. In terms of physical behavior this implies

that micelle looping stores the potential for greater increases in stress contributions,

both viscous and elastic, for when the fluid is under a higher strain rate.

At middle frequencies, we begin to see the effect of incorporating loops on the

shape of the dynamic moduli diminish. The reason is that as dumbbells increase in

length the difference in transition probability between dangling-to-active and dang-

ling-to-looping shrinks. By inspecting the ratios of species contributing to stress

we see that it closely follows that of the two species simulation. Therefore, we can

conclude that dumbbells going into the looping state are not demonstrating a length

preference beyond what is seen in the two-species case. If they were, their inclusion

would disproportionately affect the ratios of one species more than another. Instead,

their inclusion effects the other species evenly. This is what leads to the similarities

seen in the dynamic moduli characteristics –flat elastic curve and declining viscosity–

at lower overall stress levels. In physical terms, this stage of the simulation represents

a range of strain rates where loops are not playing a large role in the fluid response.

Instead, it is the attachments and detachments of dangling chains in the network that

are driving the fluid response.

At higher frequencies, dumbbell extension and orientation become the major fac-

tors in stress generation. In the three species model, active dumbbells are captured

in an extended and aligned configuration greatly increasing the amount of stress they

generate. In addition, the larger flow gradient and subsequent length cause the dan-

gling dumbbells to transition to active more quickly. Meanwhile, dumbbells out of

alignment with the fluid flow have shorter length and therefore follow similar loop-
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Figure 4.8: Stress contributing species fractions. Plots show the ratio of active (top)
and dangling (bottom) dumbbells to active and dangling combined. Three distinct
regions in the three species model are apparent; A low frequency region where includ-
ing loops decreases the ratio of active dumbbells and increase the ratio of dangling.
A mid-frequency region, where both models show similar ratios. A high frequency
region, where the three species models shows increasing numbers of active dumbbells
and decreasing numbers of dangling dumbbells.
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dangling transition dynamics. These three factors combine to create a stronger fluid

response that causes both moduli to turn upwards, a quality that compares favorably

with experimental data the telechelic associative polymer, hydrophobically modified

ethoxylated urethane (HEUR) [46, 52, 47].

Figure 4.9, compares model output to experimental data for HEUR measured

by Suzuki et al. [46]. The experimental data in the figure is the result of multiple

measurements superimposed to create a single master curve using time-temperature

superposition [14]. The curves for each temperature show a plateau in the elastic

modulus (G′) after the relaxation time –where the curves for the moduli cross. In

addition, after the relaxation point the loss modulus (G′′) decreases before curling

up. At this point no more data is provided. The model output matches both these

features well with a plateau after the relaxation time in the elastic modulus and a

similar drop and curl in the loss modulus. The filled symbols in the figure indicate

this area of similarity. The unfilled symbols are included to show the behavior of

the model at higher frequencies. The beginning of the unfilled section contains an

upward curve at the end of the G′ plateau that matches previously reported data for

HEUR from Uneyama et al. [52].

Figures 4.10 through 4.15 show the intracycle behavior of the two and three species

models. Each plot shows normalized intracycle stress and strain and species ratios

on the top left. Numbers on the curve indicate the correspondence with the dumb-

bell configuration histograms on the right. The SAOS plot bottom left indicates the

frequency from which the data is taken. On the right, dumbbell configuration his-

tograms represent the amount of dumbbells at a specific length and orientation if one

end is fixed at the origin. Dumbbell positions are not tracked so dumbbells oriented

in the quadrants I and III, have the same contribution to the stress as dumbbells ori-

ented in quadrants II and IV. Therefore, the configuration histograms are represented

as a half circle.
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Figure 4.9: Figure showing the dynamic moduli from the model and experimental
data for hydrophobically modified ethoxylated urethane. Experimental data and
model values have been shifted by constant multiples to align relaxation points. Model
parameters were set to α = 1.7 β = 8.7 χ = 0.002 for this simulation. Filled symbols
indicate the frequency range with the best match to the data. Unfilled symbols
indicate values without experimental data for qualitative comparison.
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Figure 4.10: Intracycle analysis of a low frequency two species SAOS simulation. Upper Left Normalized σxy stress, strain,
curve fit and species fractions over a single cycle. Error bars indicate the range of data over the steady state. Fit refers to
the curve generated by fitting σxy to the function A cosωt + B sinωt. The right axis shows the species fractions over the
cycle. Error bars indicate variation over the steady state. The numbered dots indicate the corresponding time in the cycle
where the corresponding dumbbell configuration histogram is taken. Right Dumbbell configuration histograms. To generate
the histograms, one end of the dumbbell is fixed at the origin. The placement of the other end is used to for the histogram.
Colors represent the number of dumbbell ends in the bin. Bottom Left Dynamic moduli for the batch of runs from which the
current data is taken. Dots indicate the frequency currently under examination.
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Figure 4.11: Intracycle analysis of a low frequency three species SAOS simulation. Upper Left Normalized σxy stress, strain,
curve fit and species fractions over a single cycle. Error bars indicate the range of data over the steady state. Fit refers to
the curve generated by fitting σxy to the function A cosωt + B sinωt. The right axis shows the species fractions over the
cycle. Error bars indicate variation over the steady state. The numbered dots indicate the corresponding time in the cycle
where the corresponding dumbbell configuration histogram is taken. Right Dumbbell configuration histograms. To generate
the histograms, one end of the dumbbell is fixed at the origin. The placement of the other end is used to for the histogram.
Colors represent the number of dumbbell ends in the bin. Bottom Left Dynamic moduli for the batch of runs from which the
current data is taken. Dots indicate the frequency currently under examination.
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Figure 4.12: Intracycle analysis of a mid-frequency two species SAOS simulation. Upper Left Normalized σxy stress, strain,
curve fit and species fractions over a single cycle. Error bars indicate the range of data over the steady state. Fit refers to
the curve generated by fitting σxy to the function A cosωt + B sinωt. The right axis shows the species fractions over the
cycle. Error bars indicate variation over the steady state. The numbered dots indicate the corresponding time in the cycle
where the corresponding dumbbell configuration histogram is taken. Right Dumbbell configuration histograms. To generate
the histograms, one end of the dumbbell is fixed at the origin. The placement of the other end is used to for the histogram.
Colors represent the number of dumbbell ends in the bin. Bottom Left Dynamic moduli for the batch of runs from which the
current data is taken. Dots indicate the frequency currently under examination.
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Figure 4.13: Intracycle analysis of a mid-frequency three species SAOS simulation. Upper Left Normalized σxy stress, strain,
curve fit and species fractions over a single cycle. Error bars indicate the range of data over the steady state. Fit refers to
the curve generated by fitting σxy to the function A cosωt + B sinωt. The right axis shows the species fractions over the
cycle. Error bars indicate variation over the steady state. The numbered dots indicate the corresponding time in the cycle
where the corresponding dumbbell configuration histogram is taken. Right Dumbbell configuration histograms. To generate
the histograms, one end of the dumbbell is fixed at the origin. The placement of the other end is used to for the histogram.
Colors represent the number of dumbbell ends in the bin. Bottom Left Dynamic moduli for the batch of runs from which the
current data is taken. Dots indicate the frequency currently under examination.
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Figure 4.14: Intracycle analysis of a high frequency two species SAOS simulation. Upper Left Normalized σxy stress, strain,
curve fit and species fractions over a single cycle. Error bars indicate the range of data over the steady state. Fit refers to
the curve generated by fitting σxy to the function A cosωt + B sinωt. The right axis shows the species fractions over the
cycle. Error bars indicate variation over the steady state. The numbered dots indicate the corresponding time in the cycle
where the corresponding dumbbell configuration histogram is taken. Right Dumbbell configuration histograms. To generate
the histograms, one end of the dumbbell is fixed at the origin. The placement of the other end is used to for the histogram.
Colors represent the number of dumbbell ends in the bin. Bottom Left Dynamic moduli for the batch of runs from which the
current data is taken. Dots indicate the frequency currently under examination.
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Figure 4.15: Intracycle analysis of a high frequency three species SAOS simulation. Upper Left Normalized σxy stress, strain,
curve fit and species fractions over a single cycle. Error bars indicate the range of data over the steady state. Fit refers to
the curve generated by fitting σxy to the function A cosωt + B sinωt. The right axis shows the species fractions over the
cycle. Error bars indicate variation over the steady state. The numbered dots indicate the corresponding time in the cycle
where the corresponding dumbbell configuration histogram is taken. Right Dumbbell configuration histograms. To generate
the histograms, one end of the dumbbell is fixed at the origin. The placement of the other end is used to for the histogram.
Colors represent the number of dumbbell ends in the bin. Bottom Left Dynamic moduli for the batch of runs from which the
current data is taken. Dots indicate the frequency currently under examination.
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Dumbbell configuration plots give insight in the effect of flow on dumbbell ori-

entation. For example, we see in figures 4.10 and 4.11, that dumbbells show little

orientation at low frequencies. Mid-range frequency results are shown in figures 4.12

and 4.13. In these plots we began to see the beginning of dumbbells orienting with the

flow. At higher frequencies the three species simulation shown in figure 4.15 and the

two species in figure 4.14 show different behavior. The two species dumbbell configu-

rations show dumbbells moving with oscillations in the fluid flow. The three species

dumbbell configuration shows active dumbbells captured an extended V-shape.

There are two factors behind the V-shape formation found in the configuration

histograms for the three species model. One is the competing effects of the spring

force and imposed solvent flow, which is also present in the two species model, and

results in a preferred orientation angle for most stretched dumbbells. The balance

between these forces is further explored mathematically in the following section. The

second factor is the length and orientation assigned to a dumbbell after it transitions

from the looped to dangling state. For example, when a dangling dumbbell extends

in the direction of the flow and becomes looped, it retains that configuration when

it transitions back to a dangling dumbbell later. If these dynamics coincide with the

oscillations of the fluid flow, a dumbbell becomes looped for the time period where

the fluid flow would cause it to retract had it stayed in the dangling state. Moreover,

if it reenters as a dangling dumbbell when the flow is moving in the same direction, it

will extend further than it would have otherwise. Figure 4.16 shows these dynamics

occur in our simulations.

The topological interpretation of the inclusion of this looping behavior depends

on the oscillation frequency. At lower frequencies, shorter dumbbells are forming

loops correspondent with the lower force of the fluid flow that should accompany less

micelle attachments and dangling chains. At mid-level flow force, the effect of loops

decreases as dumbbells extend further in the dangling state and make more network
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Figure 4.16: Progression of a single dumbbell. Plot shows the length and angle of a single dumbbell in the three species SAOS
simulation. The background colors indicate the species state of the dumbbell. Oscillations occur in both directions when the
dumbbell is not in the looped state. However, entering and exiting the looped state at opportune times allows the dumbbell to
progressively extend in length.
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attachments. At higher frequencies the role of loops is to impede movement with the

flow in a one direction and increase the potential for extension in length when the

flow reverses. The physical scenario that justifies this behavior is the case when a

dangling dumbbell which is pushed back towards its micelle core by the oscillating

flow causing it to fold back on itself and loop. In this situation, the dumbbell is unable

to follow the fluid flow. However, when the flow reverses and the dumbbell breaks

out of its looped state it forms a longer dangling dumbbell that extends further with

the fluid flow, thus enhancing its effect on the stress response. This line of reasoning

follows suggestions that loops or micelles could hinder the relaxation of chains made

in previous work [38]. Together we see that a consistent physical interpretation of

including a looping species, as we have, depends on a consideration for the dynamics

imposed by the movement of the fluid. The merits of this approach are discussed

further in the Loop Reentry Methods section.

4.2.1 Mathematical Analysis for Oscillatory Shear Flow

A mathematical analysis of the dumbbell evolution equation provides insight into

these dynamics. The non-dimensional form of an explicit computation time step is

given by,

Q(t+ ∆t) = Q(t) + κ ·Q(t)∆t− ζF (Q)∆t+
√
ζ∆tdW (4.4)

The constant ζ differs for active and dangling dumbbells and varies with the value

of Z in the case of active dumbbells. The function F (Q) is the FENE spring force

function. The main terms that affect dumbbell length at the flow rate term, and

the spring force term. The Brownian motion term plays a role, but its influence on

average is small. The flow rate term for SAOS flow is know precisely. Out of the three

terms, the FENE force is the only asymptotic term and therefore has the potential

for the greatest impact. However, in our SAOS simulations most springs spend little
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Table 4.1: Dumbbell configuration term approximations.

Purpose Flow Rate FENE Spring

Term κ ·Q(t)∆t ζF (Q)∆t

Approximation

γ0ω |Qy (t)|∆t

0

 −1.5ζ |Q (t)|∆t

Description Accounts for the ef-
fects of the oscillat-
ing fluid flow. No-
tice, that the shearing
motion only changes
a dumbbell’s x length
based on the y length.

Approximates the
spring force for dumb-
bells of moderate
length (Q < 10). As
dumbbells grow in
length, the FENE
spring force grows
asymptotically and
would therefore dom-
inate over any other
acting forces.

time in the asymptotic growth region. The nonlinear force in the FENE term, can

thus be estimated as F (Q) ≈ 1.5 |Q| for values of Q from 0 to 20. These terms are

summarized in table 4.1.

By comparing the values for different orientation angles and flows, we can deter-

mine whether the flow force or the FENE spring force plays a more dominant role.

This is illustrated by the figure 4.17. The plot contains three sections. In one sec-

tion the orientation is such that for smaller oscillation rates, the spring force is more

responsible for changing the dumbbell configuration. In the other extreme, the flow

rate dominates the behavior of the spring. In the middle, it depends on the species

of the dumbbell. The lines are estimated by the reasoning above and are not hard

boundaries, but instead indicate a balance of forces.

By examining whether the spring force or fluid flow behavior dominates the change

in spring configuration, we can clearly distinguish between the phenomena witness

in the simulation data. For example, in SAOS simulations at low frequencies, ωγ0
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Figure 4.17: Orientation angle versus oscillation frequency and flow rate. There are
three regions; a left region where the spring force is the largest factor influencing
change in dumbbell configuration, a right region where frequency and flow rate are
the larger factor, and a middle region where it depends on the dumbbell species type.
Slope and position of dividing lines depend on the value of Z.
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is small, and therefore spring behavior is dominated by the FENE force for all ori-

entations. Because the FENE force is isotropic, springs show little alignment in a

specific direction. In our simulations, all runs with ω ≤ 10 exhibit little alignment.

At middle frequencies, springs show more alignment with the flow, however, there is

still a large amount of springs randomly aligned. At high frequencies, the flow orients

and stretches active springs. As active dumbbells break and become dangling, the

spring force dominates and causes the dumbbell to retract.

In the three species model its common for active dumbbells to reach a length and

angle where the movement of the fluid flow is not enough to move the dumbbell out

of the region where flow is more influential nor is the flow strong enough to cause

a breaking transition to the dangling species as they stretch. Instead, the extended

dumbbells persist in the angle of their orientation and simply extend and retract with

the change in shear direction. The result of this behavior can be seen in the V-shape

that appears in the configuration histograms in figure 4.15.

4.3 Loop-to-Dangling Transition Methods

In the SAOS simulations we see that the method of reincorporating loops plays a sig-

nificant role in the characteristics of the dynamic moduli. In this section, we highlight

this difference by comparing two loop re-entry methods. This first method is the one

presented in the previous section. In this approach when a dangling dumbbell transi-

tions to the looped species, its length and orientation remain unchanged. When the

loops transition back to dangling dumbbells and reenter the stress calculations, they

regain their previous configuration. In this way, longer loops form longer dangling

dumbbells and shorter loops form shorter dangling dumbbells when they transition

species type. Moreover, this type of jumping from coiled to partial stretched state

has been seen in other work examining polymer behavior [1]. On the other hand, the

concern of this method is that it allows a dumbbell in the looped state to transition
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to the dangling state with a length and orientation out of phase with the fluid flow.

However, the impact of this behavior is overwhelmed by the behavior of the flow itself.

This is why we find dumbbells well aligned in the horizontal direction in steady shear

flow simulations. Moreover, because the re-entry length and orientation are chosen

from a position that resulted from the same type of flow, this method can only be

said to be enhancing characteristics already present in the dumbbell population as a

result of oscillating shear flow.

In this second method, loops are assigned random lengths chosen from a normal

distribution when they transition back to dangling dumbbells. The results of this

simulation are show in figure 4.18. The normal distribution is truncated to ensure

dumbbells do not exceed the maximum length prescribed by the FENE condition.

This approach can be said to replicate the equilibrium behavior of the dumbbells

under no flow conditions. The main difference in this approach is that the transition

from looped to dangling states causes the resulting dangling dumbbell to be shorter.

Choosing from a normal distribution diminishes the impact of the shorter length and

allows for differences arising from Brownian fluctuations in the fluid. The drawback

of this approach is that the configuration the loops take on when they transition from

loop to dangling is disconnected from the fluid flow. In this way, the resulting after-

transition configuration is the same even for drastically different fluid flows, such as

steady shear and oscillating shear.

In a comparison of simulations using the two methods we see that they lead to

significantly different behavior. The looping behavior in the first simulation enhances

the effect of oscillating shear flow on the dumbbell configuration. This results in longer

dangling and active dumbbells that adapt a V-shape in the configuration histograms.

The V-shape also corresponds with increases in both the dynamic moduli. In the

second simulation, the looping reentry choice diminishes the effects of the imposed

fluid flow because reentry configurations are the same at zero and non-zero flow. The
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Figure 4.18: Intracycle behavior from a three species SAOS simulation where loops transition to dangling with length draw
from a normal distribution. In these simulations, the looped-to-dangling dumbbells take configurations based on a truncated
normal distribution. (Upper left) Plot showing intracycle stress, strain and species fractions. (Lower left) Dynamic moduli
across a range of frequencies. The intra-cycle is taken from the run indicated by the black dot. (Right) Dumbbell configuration
histograms separated by type and intracycle time.
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result is that all three species types show more rounded distributions that have less

alignment in any specific directions. In addition, the relaxation point shows a marked

shift to higher frequencies, indicating the diminished influence of the oscillating shear

flow.

On the whole, our simulations show that the method used to transition loops

to dangling dumbbells has a significant effect on the dynamic moduli measured in

SAOS flows. For both methods, there exists reasonable physical arguments for and

against their implementation. However, we chose to focus our efforts on the first

method due to the unique behaviors it exhibits and its similarities to experiment.

Although comprehensive examination of loop reentry dynamics is beyond the scope

of the current work, the results present herein show that it is an area worthy of further

study.

4.4 Large Amplitude Oscillatory Shear

In comparison to SAOS, large amplitude oscillatory shear (LAOS) studies have be-

come common place only recently with the advent of more sensitive transducers in

commercially available rheometers [41]. LAOS studies go beyond SAOS, using larger

deformations to probe nonlinear rheology, whereas the linear viscoelastic theory be-

hind SAOS is only valid for small deformations. In most processing operations poly-

mer deformation is both rapid and large and thus LAOS simulations are necessary

for a complete understanding [25]. In light of the significance of this emerging filed,

we simulated LAOS deformations and measured the stress response using our three

species model with the same attachment detachment and looping parameter values.

A pipkin diagram provides a rheological fingerprint”that illustrates the nonlinear

viscoelastic properties of the material response [16]. As with SAOS simulations, the

resulting stress from LAOS can be decomposed into the elastic and viscous contri-

butions [12]. For each of these, a pipkin diagram is provided in figure 4.19 for the
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Figure 4.19: Pipkin diagrams showing elastic Bowditch-Lissajou curves form a three
species large amplitude oscillatory shear flow simulation. Each simulation was done
with parameters α = 1, β = 10 and χ = 0.01. ω is the oscillation frequency,
λeff = 1/τ = 14.1343.

elastic component and figure 4.20 for the viscous component. Within each diagram,

a grid of Lissajou-Bowditch curves expresses the nature of the nonlinear response at

intervals of frequency, ω, and strain amplitude, γ0. The dashed line represents the

elastic stress contribution for the elastic diagram, and the viscous stress in the viscous

diagram. The total stress, including both elastic and viscous, is represented by the

solid line [9].

In both figures, the bottom row of curves represents results within the linear

regime. In this row, the undistorted ellipse indicates a linear material response (this

was also confirmed via Fourier Transform techniques, see section 3.3). In figure 4.19,
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Figure 4.20: Pipkin diagrams showing viscous Bowditch-Lissajou curves form a three
species large amplitude oscillatory shear flow simulation. Each simulation was done
with parameters α = 1, β = 10 and χ = 0.01. ω is the oscillation frequency,
λeff = 1/τ = 14.1343.

a more circular curve indicates a more viscous response. Whereas, a single straight

line represents a purely elastic response [16]. Applying this understanding, we see

that the Lissajou-Bowditch curves at this strain-amplitude indicate a progression

from a viscous response to something more elastic, followed by several more viscous

responses, before again shifting back to a more elastic response. This is consistent

with results seen in the dynamic moduli plots in figure 4.7 from section 4.2.

As the strain-amplitude increases both diagrams indicate increasing nonlinear

responses. By examining the figures column-wise, we see a shift from smooth ellipses

to increasingly distorted shapes. This indicates the presence of higher harmonics
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in the material response that can be used to provide additional detail about the

material response. For example, the strength and sign of the third harmonic can be

used to indicate strain stiffening or strain softening in the elastic diagram, or shear

thickening or thinning in the viscous diagram [16]. In the first column of figure 4.19,

the distortion from a circular ellipse to a rounded rectangle between the second and

third rows is largely the result of contributions from the third harmonic and indicates

intracycle softening. The additional distortions to the shape on the fourth row are an

example of a material response with large contributions from additional harmonics

beyond the third.

The purpose of the brief analysis above is not to detail all the intricacies of the

non-linear response but to instead demonstrate the potential application to LAOS

simulations due to the fidelity of the model. Indeed, generating the figures presented

here required no modification to the model or oscillatory shear simulation code. In-

stead, they represent the result of increasing the strain-amplitude parameter and

analyzing the results via the MITLaos software [17]. Through this natural extension

our model shows the ability to simulate the additional harmonics of the material

response found in LAOS simulations. By demonstrating this, we hope to lay the

groundwork for a more detailed analysis to appear in future work.
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Chapter 5

Conclusion

In this article we present an extension of the Brownian Dynamics approach inspired

by the work of Hernández Cifre et al. We incorporate recent developments in the

probability of network bridge destruction and offer a new form for the probability of

bridge creation. We also include a third species type, looped dumbbells, and offer

novel methods of incorporating them into the Brownian dynamics structure previ-

ously established. Furthermore, our work employs an efficient parallel computational

scheme using GPUs that allows for accurate Brownian dynamics simulations under

complex conditions.

Steady shear flow simulations show the ability of our scheme to generate shear-

thickening and shear-thinning behavior by independently adjusting bridging and de-

taching parameters. This distinction demonstrates the added flexibility in the basis

of our model which will allow it to be more readily adapted to additional complexities

in the future. In three species simulations, we find that including looping dumbbells

lowered overall stress and strengthened the nonlinear response. This was largely the

result of the looping species regulating the number of dangling and active dumbbells

contributing to the stress; a function, that decreased with increasing flow rate.

This work also presents the results of small amplitude oscillatory shear flow with

ensembles of 1024000 dumbbells spanning a wide frequency spectrum. In these sim-

ulations, including a third looping species makes a clear impact across the frequency

spectrum. The most notable portion being an upward turn in both dynamic moduli

at medium-to-high frequency oscillations that is not found in two species simulations.
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Moreover, we plot configuration histograms which show the existence of a V-shape

distribution in the steady state that results from including looping dynamics. This

V-shape corresponds to the unique upward turn in the dynamic moduli.

We further examine two separate approaches to the dynamics of the looped-to-

dangling species transition. In the first, we allow dumbbells to take on their previous

configuration when transitioning from looped to dangling. In the second, the dumb-

bells are assigned lengths according to a Gaussian distribution truncated to fit within

the maximum dumbbell length. A comparison of these two approaches makes it

clear that these dynamics play a significant role in the fluid response. Therefore, we

identify this aspect of the model as an area important to future research.

To demonstrate the range of fluid flow simulations that our code platform is

capable of modeling, we include elastic and viscous Bowditch-Lissajous plots from

large amplitude oscillatory shear simulations. Together this work makes a strong

case for revisiting the Brownian dynamics approach to simulating complex rheology

modelled with FENE dumbbells. Three reasons are the straight forward equations

used to describe the molecular motion, the wide range of flow types that can be

simulated, and the ease with which multiple species dynamics can be incorporated.

Each of these advantages are the result of the mean-field approach which allows

the independent simulation of dumbbells to approximate overall network influence

on the fluid. Moreover, because our approach can be updated easily, as scientific

understanding of micro-rheology in telechelic polymers advances, the capability of

this code platform will increase with it.
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Appendix A

Derivation of the Dumbbell Equation

In the elastic bead-spring or dumbbell model [30] a macromolecule is idealized as an

“elastic dumbbell”. Each endpoint of the dumbbell undergoes drag from two sources.

The first is due to movement of the endpoint itself. The second is due to the flow of

fluid around it. Endpoint collisions with molecules in the solvent lead to Brownian

motion. The edge between each endpoint represents a molecular chain which has a

maximum length and a resistance to stretching due to a preferred configuration in the

solution. Therefore, a FENE spring force [57] is employed. In the model interpretation

we assume the inertial forces to be considered negligible in comparison to other forces

in the model, as is convention [6]. Collecting these factors in a force balance equation

yields a mathematical expression for the behavior of a single endpoint.

∑
Fi = Movement Drag+Fluid Flow Drag+Spring Force+Brownian Motion (A.1)

Using Newton’s second law ∑
F = ma, expressions for the forces, and assuming

negligible inertia ma = 0, we then get,

0 = −1
ζ
dxi + F Spring(xi)dt+ 1

ζ
vidt+

√
kBT

ζ
dtdW (A.2)

dxi = ζF Spring(xi)dt+ vdt+
√
kBTζdtdW . (A.3)

Now let Q be the edge connecting the two end points so that Q = x2 − x1. The

conceptualization of Q shown in figure 2.3 and is the source of the term ‘Elastic

Dumbbell’. Then,
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d (x2 − x1) = −ζF Spring(x2 − x1)dt+ (v2 − v1) dt+
√
kBTζdt (dW 2 − dW 1)

(A.4)

d (Q) = −ζF Spring(Q)dt+ (∇v) dt+
√
kBTζdt (dW 2 − dW 1) . (A.5)

By the Normal Sum Theorem [33], dW 2 ± dW 1 =
√

2dW . In addition, its

common to let κ = (∇v)T . Incorporating these two adjustments leads to,

dQ = −ζF Spring(Q)dt+ κ ·Qdt+
√

2kBTζdtdW . (A.6)

This equation is what is used to simulate the polymer segment behavior.
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Appendix B

Numerical Scheme

A semi-implicit absolutely stable numerical scheme evolves the dumbbells over time.

Put forth by E.A.L.F, Peters in [39], the scheme is only first order accurate. However,

the value of the approach comes from the relative computational cost of each step.

Due to the stochastic nature of the simulation, a large number of realizations must

be computed to lower noise in the model. Under this consideration, the ability to

calculate many individual dumbbells quickly is balanced by the need for accuracy in

each. More accurate schemes exist, however employing and developing them was not

a focus of the current work. The scheme as it applies to this application is derived in

full below.

The following equation describes the change in configuration of a single dumbbell,

dQ = κ ·Qdt−Hζ Q
1−Q2/Q2

max

dt+
√

2kBTζdW. (B.1)

Using the formula,

d

dt
|Q|2 = 2

(
d

dt
Q
)
·Q, (B.2)

the change in dumbbell length can be found as,

d |Q|2 = 2Q · κ ·Qdt− 2Hζ Q2

1−Q2/Q2
max

dt+ 2Q ·
√

2kBTζdW. (B.3)

The numerical scheme first calculates changes in the orientation and length due

to the flow and Brownian motion in an explicit step. Then the change in length due

78



www.manaraa.com

to the FENE spring force is added in a second implicit step.

Q1 = Q + κ ·Qdt+
√

2kBTζdW (B.4)

Q2 = |Q1|2 − 2Hζ Q2

1−Q2/Q2
max

(B.5)

Q =
√
Q2

Q2
1
Q1 (B.6)

Equation B.5 is quadratic in Q2.

Q2 = |Q1|2 − 2Hζ Q2
maxQ

2

Q2
max −Q2dt (B.7)

(
Q2
max −Q2

)
Q2 = |Q1|2

(
Q2
max −Q2

)
− 2HζQ2

maxQ
2dt (B.8)

Q4 +−Q2
[
1 + 2Hζdt+ |Q1|2 /Q2

max

]
|Q1|2 = 0 (B.9)

This results in two solutions for Q2. The solution with |Q| < Qmax is given by

the solution:

2Q2

Q2
max

=
[
1 + 2Hζdt+ |Q1|2 /Q2

max

]
+

√√√√[1 + 2Hζdt+ |Q1|2 /Q2
max

]2
− 4 |Q1|2

Q2
max

(B.10)

Multiplying by the conjugate gives,
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2Q2

Q2
max

= (B.11)[
1 + 2Hζdt+ |Q1|2 /Q2

max

]2
−
[
1 + 2Hζdt+ |Q1|2 /Q2

max

]2
+ 4 |Q1|2 /Q2

max[
1 + 2Hζdt+ |Q1|2 /Q2

max

]
+
√[

1 + 2Hζdt+ |Q1|2 /Q2
max

]2
− 4 |Q1|2 /Q2

max

(B.12)
Q2

|Q1|2
= (B.13)

2[
1 + 2Hζdt+ |Q1|2 /Q2

max

]
+
√[

1 + 2Hζdt+ |Q1|2 /Q2
max

]2
− 4 |Q1|2 /Q2

max

.

(B.14)

80



www.manaraa.com

Appendix C

Cuda C Code

The CUDA C simulation code is presented below.

1 /∗

2 ∗ Erik Palmer

3 ∗ 10−22−2015

4 ∗

5 ∗ Three species dumbbell simulation

6 ∗

7 ∗ Evolves population of dumbbells over time according to

8 ∗ flow characterists and species switching probabilities.

9 ∗ Produces a measure of the stresses on the fluid.

10 ∗

11 ∗ To Compile:

12 ∗ nvcc <filename.cu> −lcurand −o <output file>

13 ∗

14 ∗ GelModel:

15 ∗ Use transistion probabilities from the physical arguments.

16 ∗ Add ifdefs to control SAOS, and other aspects of the model

17 ∗

18 ∗

19 ∗ SPECIES GUIDE:

20 ∗ Int | Type
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21 ∗ 0 | Polymer One − Active

22 ∗ 1 | Polymer One − Dangling

23 ∗ 2 | Polymer Two − Active

24 ∗ 3 | Polymer Two − Dangling

25 ∗

26 ∗

27 ∗/

28

29

30 #include <stdio.h>

31 //required to compile on windows, must be before math.h

32 #define _USE_MATH_DEFINES

33 #include <math.h>

34 #include <stdlib.h>

35 #include <time.h>

36 #include <string.h>

37 #include <errno.h>

38 #include <ctype.h>

39 #include <stdint.h> //added to use unsigned int32

40

41 #include <cuda.h>

42 #include <curand.h>

43 #include <curand_kernel.h>

44 //#include <math_functions.h>

45 #include <unistd.h> //added to check for file existence

46

47

48

49 //Define Macros for Error handling
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50

51 #define CUDA_CALL(x) do { if((x)!=cudaSuccess) { \

52 printf("Error at %s:%d\n", __FILE__,__LINE__); \

53 return EXIT_FAILURE; }} while(0)

54 #define CURAND_CALL(x) do { if((x)!= CURAND_STATUS_SUCCESS) { \

55 printf("Error at %s:%d\n", __FILE__, __LINE__); \

56 return EXIT_FAILURE; }} while(0)

57 //This one is better because it also outputs the error message

58 #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__);}

59 inline void gpuAssert(cudaError_t code, const char ∗file, int line,

60 bool abort=true)

61 {

62 if (code != cudaSuccess)

63 {

64 fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file,

65 line);

66 if (abort) exit(code);

67 }

68 }

69

70 //define maximum filesize for raw data file 5e10 bytes = 50GB

71 #define RAWDATA_MAX_FILESIZE 1e10

72

73 #define MICRODATA_MAX_FILESIZE 2e11

74

75

76 //Define Macro for Histogram debugging

77 #define PRINT_VAR(x) printf("" #x "\n ")

78
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79 //Debugging Macros

80 #define PRINT_VAR_FLOAT_VALUE(x) printf("" #x "=%f\n", x)

81 #define PRINT_VAR_INT_VALUE(x) printf("" #x "=%d\n", x)

82 //∗ Also useful: printf("DEBUG LINE %d\n", __LINE__);

83

84

85 //___velocity field on−off matrix ____

86 // note that this matrix is multiplied by the inputed flowrate value

87 #define U11 0.0

88 #define U12 0.0

89 #define U21 1.0

90 #define U22 0.0

91 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

92

93 //__ Name for .csv file ___

94 #define OUTPUT_FILENAME "THREESPECIES"

95

96 /∗ Name for Raw Output File ∗/

97 #define RAWDATA_FILENAME "RAWDATA"

98

99

100

101 #define INIT_ACT_TO_DNG_RATIO 0.5

102 #define TAO_FUND 5e−6 //Default 5e−6

103 #define ZEE 10.0 //Default 10.0

104 #define CHI 0.03 //Default 0.83

105 #define ALPHA 0.1 //Default 0.17

106 #define BETA 0.1 //Default 0.17

107 #define D_FREE 12.0 //Default 12.0

84



www.manaraa.com

108

109 #define A_COEFF 1.2026e6

110 #define B_COEFF 6.4286e−5

111

112 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

113

114

115

116 //____Define Global Variables________

117 //For GPU

118 __device__ double devStepSizeMicro;

119 __device__ double devFlowRate;

120 __device__ double devMaxSpringLength;

121 __device__ double devFreq;

122

123

124 //For CPU

125 static unsigned int hostNumberOfParticles = 0;

126 static double hostStepSizeMicroFirst = 0;

127 static double hostStepSizeMicroSecon = 0;

128 static unsigned int hostTimeStepsMicro = 0;

129 static unsigned int hostTimeStepsMacro = 0;

130 static double hostFlowRate;

131 static double hostMaxSpringLength;

132 static double hostFreq;

133 static unsigned int hostMacroStepSizeSplitPt = 0;

134

135 //Additional Commandline Arguments

136 //GPU

85



www.manaraa.com

137 __device__ double devD_free;

138 __device__ double devZee;

139 __device__ double devChi;

140 __device__ double devAlpha;

141 __device__ double devBeta;

142

143 //CPU

144 static double hostD_free = D_FREE;

145 static double hostZee = ZEE;

146 static double hostChi = CHI;

147 static double hostAlpha = ALPHA;

148 static double hostBeta = BETA;

149

150 static double Init_Active_Ratio;

151 static double Init_Dangle_Ratio;

152

153 #ifdef NO_REPORT

154 /∗

155 ∗ This variable wasn’t doing anything useful so I hijacked it to

156 ∗ create a period of the simulations where the output is not sent to the

157 ∗ cpu to report it. Instead it stays on the GPU. Seems to speed things

158 ∗ up quite a bit so far.

159 ∗/

160 static unsigned long long hostA_coeff = A_COEFF;

161 #else

162 static double hostA_coeff = A_COEFF;

163 #endif

164

165 static double hostB_coeff = B_COEFF;
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166

167 static int GPU_select;

168 static char RawData_select[256];

169 static char DataFileName[256];

170 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

171

172

173 //___ Struct defintions ___

174 typedef struct SpeciesValue {

175 double ActiveLen;

176 double DangleLen;

177 double LoopedLen;

178 double ActiveAng;

179 double DangleAng;

180 double LoopedAng;

181 double ActiveX;

182 double DangleX;

183 double LoopedX;

184 double ActiveY;

185 double DangleY;

186 double LoopedY;

187 } SpeciesValue;

188

189 typedef struct SpeciesCount {

190 int Active;

191 int Dangle;

192 int Looped;

193 } SpeciesCount;

194
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195 typedef struct TwoDimSpring {

196 double x;

197 double y;

198 } TwoDimSpring;

199

200 typedef struct Stress {

201 double XX;

202 double XY;

203 double YY;

204 } Stress;

205

206 typedef struct Dumbbell {

207 int type;

208 double x;

209 double y;

210 } Dumbbell;

211

212 #ifdef SINGLE_MICRO

213 typedef struct DBSpecChng {

214 int type;

215 double time;

216 double x;

217 double y;

218 } DBSpecChng;

219 #endif

220 #ifdef MICRO_RAW

221 typedef struct DBSpecChng {

222 int type;

223 double length;
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224 } DBSpecChng;

225 #endif

226

227 //‘‘‘‘‘‘‘‘‘‘‘‘

228

229 //Function: ParseInput

230 //Sorts and examines command line input for inappropriate data

231 int ParseInput(int argc, char ∗argv[]){

232

233

234 if ( argc > 1 && argc != 22 ){

235 printf("ERROR: Incorrect number of input arguments. 20 required.\n");

236 printf("Format: %s \n [number of dumbbells]\n", argv[0]);

237 printf(" [micro step size stage 1]\n [micro step size stage 2]\n ");

238 printf(" [micro time steps per macro step]\n ");

239 printf(" [total steps macro]\n ");

240 printf(" [number of macro steps with micro step size stage 1]\n ");

241 printf(" [flow rate]\n [Maximum Spring Length]\n");

242 printf(" [SAOS frequency]\n [Drag Coefficient]\n [Z]\n"

243 "[Alpha0]\n [Alpha1]\n");

244 printf(" [Beta]\n");

245 printf(" [Initial Percentage of Active Dumbbells]\n");

246 printf(" [Initial Percentage of Dangling Dumbbells]\n");

247 printf(" [A Coefficient]\n [B Coefficient]\n");

248 printf(" [GPU Device (0 or 1)]\n [Write Raw Data (Y or N)]\n");

249 printf(" [Output Filename]\n");

250 return EXIT_FAILURE;

251 } else if (argc ==1){

252
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253 //Use default values

254 printf("Using default values.\n");

255

256 hostNumberOfParticles = 1048576;

257 hostStepSizeMicroFirst = 0.1;

258 hostStepSizeMicroSecon = 0.001;

259 hostTimeStepsMicro = 100;

260 hostTimeStepsMacro = 100;

261 hostMacroStepSizeSplitPt = 50;

262 hostFlowRate = 1.0;

263 hostMaxSpringLength = 5.0;

264 hostFreq = 1.0;

265 hostD_free = D_FREE;

266 hostZee = ZEE;

267 hostChi = CHI;

268 hostAlpha = ALPHA;

269 hostA_coeff = A_COEFF;

270 hostB_coeff = B_COEFF;

271 Init_Active_Ratio = 0.5;

272 Init_Dangle_Ratio = 0.5;

273

274 GPU_select = 0;

275

276 strcpy(RawData_select, "N");

277 strcpy(DataFileName, "DEFAULT");

278

279 return(0);

280 }

281
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282

283 errno = 0;

284

285 //Num of dumbbells

286 hostNumberOfParticles = strtoul(argv[1], NULL, 10);

287 //micro step size stage 1

288 hostStepSizeMicroFirst = strtod(argv[2], NULL);

289 //micro step size stage 2

290 hostStepSizeMicroSecon = strtod(argv[3], NULL);

291 //number of micro time steps looped on GPU per single CPU macro step

292 hostTimeStepsMicro = strtoul(argv[4], NULL, 10);

293 //total number of macro time steps for the simultation

294 hostTimeStepsMacro = strtol(argv[5], NULL, 10);

295 //number of macro steps using micro steps of size stage 1

296 hostMacroStepSizeSplitPt = strtol(argv[6], NULL, 10);

297 hostFlowRate = strtod(argv[7], NULL);

298 hostMaxSpringLength = strtod(argv[8], NULL);

299 hostFreq = strtod(argv[9], NULL);

300

301 //additional command line arguments

302 hostD_free = strtod(argv[10], NULL);

303 hostZee = strtod(argv[11], NULL);

304 hostChi = strtod(argv[12], NULL);

305 hostAlpha = strtod(argv[13], NULL);

306 hostBeta = strtod(argv[14], NULL);

307 Init_Active_Ratio = strtod(argv[15], NULL);

308 Init_Dangle_Ratio = strtod(argv[16], NULL);

309 #ifdef NO_REPORT

310 hostA_coeff = strtoull(argv[17], NULL, 10);
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311 #else

312 hostA_coeff = strtod(argv[17], NULL);

313 //New use: Number of macro steps to skip before recording data.

314 //(Speed sim runtime)

315 #endif

316 hostB_coeff = strtod(argv[18], NULL);

317

318 GPU_select = (int) strtol(argv[19], NULL,10);

319 strcpy(RawData_select, argv[20]);

320 strcpy(DataFileName, argv[21]);

321

322

323 if (hostNumberOfParticles==0){

324 printf("Unable to convert %s to positive integer\n", argv[1]);

325 return EXIT_FAILURE;

326 }

327

328 if (hostStepSizeMicroFirst==0){

329 printf("Unable to convert %s to double\n", argv[2]);

330 return EXIT_FAILURE;

331 }

332

333 if (hostStepSizeMicroSecon==0){

334 printf("Unable to convert %s to double\n", argv[3]);

335 return EXIT_FAILURE;

336 }

337

338 if (hostTimeStepsMicro==0){

339 printf("Unable to convert %s to positive integer\n", argv[4]);
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340 return EXIT_FAILURE;

341 }

342

343 if (hostTimeStepsMacro==0){

344 printf("Unable to convert %s to positive integer\n", argv[5]);

345 return EXIT_FAILURE;

346 }

347

348 if (hostMacroStepSizeSplitPt==0){

349 printf("Unable to convert %s to positive integer\n", argv[6]);

350 return EXIT_FAILURE;

351 }

352

353 if (hostMaxSpringLength == 0){

354 printf("Unable to convert %s to positive double\n", argv[8]);

355 return EXIT_FAILURE;

356 }

357

358 if (hostFreq == 0){

359 printf("Unable to convert %s to positive double\n", argv[9]);

360 return EXIT_FAILURE;

361 }

362

363 //__ additional command line arguments ___

364 if (hostD_free == 0){

365 printf("Unable to convert %s to positive double\n", argv[10]);

366 return EXIT_FAILURE;

367 }

368 if (hostZee == 0){
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369 printf("Unable to convert %s to positive double\n", argv[11]);

370 return EXIT_FAILURE;

371 }

372

373 if (hostA_coeff == 0){

374 printf("hostA_coeff input error:"

375 " Unable to convert %s to positive double\n", argv[17]);

376 return EXIT_FAILURE;

377 }

378 if (hostB_coeff == 0){

379 printf("Unable to convert %s to positive double\n", argv[18]);

380 return EXIT_FAILURE;

381 }

382

383 switch(RawData_select[0]){

384 case ’N’:

385 case ’n’:

386 strcpy(RawData_select,"No");

387 break;

388 case ’Y’:

389 case ’y’:

390 strcpy(RawData_select,"Yes");

391 break;

392 default:

393 printf("The only valid choices to write raw data file are:"

394 " Y,y,N,n\n");

395 return EXIT_FAILURE;

396 }

397
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398 if ((RawData_select[0]!=’Y’)&&(RawData_select[0]!=’N’)

399 &&(RawData_select[0]!=’y’)&&(RawData_select[0]!=’n’))

400 {

401 printf("The only valid choices to write raw data file are: Y,y,N,n\n");

402 return EXIT_FAILURE;

403 }

404 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

405

406 //Check to see if same filename for output exists.

407 // If the file exists, exit the program.

408 // This was done to fix the restarting issue

409

410 char CheckFilename[264];

411

412 sprintf(CheckFilename, "%s.csv", DataFileName);

413

414 if ( access ( CheckFilename, F_OK) != − 1 ){

415

416 printf("File: %s exists, exiting program.\n", CheckFilename);

417 return EXIT_FAILURE;

418 }

419

420 else {

421 //create empty file to hold the sapce.

422

423 FILE ∗OutputFile = NULL;

424 OutputFile = fopen(CheckFilename, "w");

425

426 if (OutputFile == NULL){
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427 fprintf(stderr, "Couldn’t open output file: %s!\n", CheckFilename);

428 exit(1);

429 }

430

431 fclose(OutputFile);

432 }

433

434 //Also check for bin file

435 sprintf(CheckFilename, "%s.bin", DataFileName);

436

437 if ( access ( CheckFilename, F_OK) != − 1 ){

438

439 printf("File: %s exists, exiting program.\n", CheckFilename);

440 return EXIT_FAILURE;

441 }

442

443

444 if (errno == ERANGE){

445 printf("%s\n", strerror(errno));

446 return EXIT_FAILURE;

447 }

448

449

450 return 0;

451 }

452

453

454

455
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456

457

458

459 //Function PrinSimInfo

460 //Prints to terminal information about the current simulation

461 void PrintSimInfo(){

462

463 // ___ Calculate and output program parameters _____

464 printf("___________ Running Simulation _________________\n");

465 #ifdef SIMPLE_SHEAR

466 printf("|| Simple Shear Flow \n");

467 #else

468 printf("|| Small Oscillatory Shear Flow\n");

469 #endif

470 #ifdef LOOPED_DUMBBELLS

471 printf("|| Dumbbell Types: Active, Dangling and Looped\n");

472 #else

473 printf("|| Dumbbell Types: Active, and Dangling\n");

474 #endif

475

476

477

478 printf("|| Total Time: %g \n",

479 (hostStepSizeMicroFirst ∗ hostMacroStepSizeSplitPt

480 + hostStepSizeMicroSecon

481 ∗ (hostTimeStepsMacro − hostMacroStepSizeSplitPt))

482 ∗ hostTimeStepsMicro );

483 printf("|| −−−− Time Step Parameters −−−− \n" );

484 printf("|| Total Number of Macro Steps: %u\n", hostTimeStepsMacro);
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485 printf("|| Micro Steps Per Macro Iteration: %u\n", hostTimeStepsMicro);

486 printf("|| Macro Step Size Split Point: %u\n", hostMacroStepSizeSplitPt);

487 printf("||\n");

488 printf("|| −−− Stage One −−− \n");

489 printf("|| Micro Step Size: %1.12g\n", hostStepSizeMicroFirst);

490 printf("|| Macro Step Size: %1.12g\n", hostStepSizeMicroFirst

491 ∗ hostTimeStepsMicro);

492 printf("|| Number of Macro Steps: %u\n", hostMacroStepSizeSplitPt);

493 printf("|| Stage One Total Time: %1.12g\n", hostStepSizeMicroFirst

494 ∗ hostTimeStepsMicro ∗ hostMacroStepSizeSplitPt);

495 printf("|| Flow Rate: 0 \n");

496 printf("||\n");

497 printf("|| −−− Stage Two −−− \n");

498 printf("|| Micro Step Size: %1.12g\n", hostStepSizeMicroSecon);

499 printf("|| Macro Step Size: %1.12g\n", hostStepSizeMicroSecon

500 ∗ hostTimeStepsMicro);

501 printf("|| Number of Macro Steps: %u\n", hostTimeStepsMacro

502 − hostMacroStepSizeSplitPt);

503 printf("|| Stage Two Total Time: %1.12g\n", hostStepSizeMicroSecon

504 ∗ hostTimeStepsMicro ∗ (hostTimeStepsMacro − hostMacroStepSizeSplitPt));

505 printf("|| Flow Rate: %g \n", hostFlowRate);

506 printf("||\n");

507 printf("|| −−−−− Simulation Parameters −−−− \n");

508 printf("|| Number of Particles: %u\n", hostNumberOfParticles);

509 printf("|| Maximum Spring Length: %g\n", hostMaxSpringLength );

510 printf("|| SAOS Frequency: %g\n", hostFreq );

511 printf("|| d: %g\n", hostD_free );

512 printf("|| Z: %g\n", hostZee );

513 printf("|| Chi: %g\n", hostChi);
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514 printf("|| Alpha: %g\n", hostAlpha);

515 printf("|| Beta: %g\n", hostBeta);

516 printf("|| Initial Active Ratio: %g\n", Init_Active_Ratio);

517 printf("|| Initial Dangling Ratio: %g\n", Init_Dangle_Ratio);

518 printf("|| Initial Looped Ratio: %g\n",

519 1−Init_Dangle_Ratio−Init_Active_Ratio);

520 #ifdef NO_REPORT

521 printf("|| Macro Step Jump: %llu\n", hostA_coeff);

522 #else

523 printf("|| A Coefficient: %g\n", hostA_coeff);

524 #endif

525 printf("|| B Coefficient: %g\n", hostB_coeff);

526 printf("||\n");

527 printf("|| −−−−− Program Options −−−−− \n");

528 printf("|| Running on GPU device: %d\n", GPU_select);

529 printf("|| Write Raw Data: %s\n", RawData_select);

530 printf("|| Output Filename: %s\n", DataFileName);

531 printf(" − − − − − − − − − − − − − − − − − − − − − − − \n");

532

533 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

534 }

535

536 //Function OutputToFile

537 //Writes header containing information about the similuation

538 //and contents of three vectors to file

539

540 /∗

541 ∗ Write data to a .csv file

542 ∗
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543 ∗ Writes detailed parameter information and meta data to a csv

544 ∗ whose file name is specified by OUTPUT_FILENAME

545 ∗

546 ∗

547 ∗/

548 #ifdef SPEC_CHNG

549

550 void OutputToFile ( double XX[], double XY[], double YY[],

551 double TimeTrack[], double time_spent, int count,

552 char ProgName[],

553 double ActiveRatio[], double DangleRatio[],

554 double LoopedRatio[],

555 SpeciesValue AvgLen[], SpeciesValue Variance[],

556 int NumOfBins, SpeciesCount ∗∗Hist,

557 Stress Time_k_Stress[], Stress Active_Stress[],

558 Stress Dangle_Stress[],

559 double AvgSpringLife[],

560 unsigned int Dng2Act[], unsigned int Dng2Lpd[],

561 unsigned int Act2Dng[], unsigned int Lpd2Dng[],

562 char OutputFileName[]){

563

564 #else

565

566 // Function Description: output results to .CSV file

567 void OutputToFile ( double XX[], double XY[], double YY[],

568 double TimeTrack[], double time_spent, int count,

569 char ProgName[],

570 double ActiveRatio[], double DangleRatio[],

571 double LoopedRatio[],
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572 SpeciesValue AvgLen[], SpeciesValue Variance[],

573 int NumOfBins, SpeciesCount ∗∗Hist,

574 Stress Time_k_Stress[], Stress Active_Stress[],

575 Stress Dangle_Stress[],

576 double AvgSpringLife[],

577 char OutputFileName[]){

578

579 #endif

580

581

582 FILE ∗OutputFile = NULL;

583

584 sprintf(OutputFileName, "%s.csv", OutputFileName); //<−−−Filename

585

586 OutputFile = fopen(OutputFileName, "w+"); //w+ to overwrite file

587

588 if (OutputFile == NULL){

589 fprintf(stderr, "Couldn’t open output file: %s!\n", OutputFileName);

590 exit(1);

591 }

592

593 // ____ Header for textfile _______________________

594 //Descrption

595

596 fprintf(OutputFile,

597 "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗",

598 "∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n");

599 fprintf(OutputFile,"∗ %60s ∗\n",ProgName);

600 fprintf(OutputFile,"∗ Header − 8 lines, 1 thru 8,",
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601 "Parameters+2 − 25 lines, 9 thru 33 ∗\n");

602 fprintf(OutputFile,"∗ Data header − 3 lines, 34 thru 36,",

603 " Stress Data − lines, 37+ ∗\n");

604

605 /∗

606 ∗ List preprocessor options so that it is clear in output.

607 ∗/

608

609 fprintf(OutputFile, " Preprocessor Options: ");

610 #ifdef SIMPLE_SHEAR

611 fprintf(OutputFile, "SIMPLE_SHEAR, ");

612 #else

613 fprintf(OutputFile, "OSCILLATORY_SHEAR, ");

614 #endif

615

616 #ifdef LOOPED_DUMBBELLS

617 fprintf(OutputFile, "LOOPED_DUMBBELLS, ");

618 #else

619 fprintf(OutputFile, "ACTIVE_AND_DANGLING_ONLY, ");

620 #endif

621

622 #ifdef NEW_TAU

623 fprintf(OutputFile, "NEW_TAU, ");

624 #endif

625

626 #ifdef RAW_OUT

627 fprintf(OutputFile, "RAW_OUT, ");

628 #endif

629
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630 #ifdef DEBUG

631 fprintf(OutputFile, "DEBUG, ");

632 #endif

633

634 #ifdef SPEC_CHNG

635 fprintf(OutputFile, "SPEC_CHNG, ");

636 #endif

637

638 #ifdef SINGLE_MICRO

639 fprintf(OutputFile, "SINGLE_MICRO: ID(unit):%d Type(int):%lu",

640 " Length(double):%lu ",

641 SINGLE_MICRO, sizeof(int), sizeof(double));

642 #endif

643 #ifdef MICRO_RAW

644 fprintf(OutputFile, "MICRO_RAW: ID(unit):%lu Type(int):%lu",

645 " Length(double):%lu ",

646 sizeof(unsigned int), sizeof(int), sizeof(double));

647 #endif

648

649

650 #ifdef FIXED_SEED

651 fprintf(OutputFile, "FIXED_SEED, ");

652 #endif

653

654 #ifdef SINGLE_MICRO

655 fprintf(OutputFile, "SINGLE_MICRO, ");

656 #endif

657

658 #ifdef MICRO_RAW
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659 fprintf(OutputFile, "MICRO_RAW, ");

660 #endif

661

662 #ifdef COND_PROB_METHOD

663 fprintf(OutputFile, "COND_PROB_METHOD, ");

664 #endif

665

666 #ifdef CHK_DNG

667 fprintf(OutputFile, "CHK_DNG, ");

668 #endif

669

670 #ifdef LEN_CHG

671 fprintf(OutputFile, "LEN_CHG, ");

672 #endif

673

674 #ifdef PROB_TEST

675 fprintf(OutputFile, "PROB_TEST, ");

676 #endif

677

678 #ifdef SINGLE_TRACK

679 fprintf(OutputFile, "SINGLE_TRACK, ");

680 #endif

681

682 #ifdef LOOP_PROB_TWO

683 fprintf(OutputFile, "LOOP_PROB_TWO, ");

684 #endif

685

686 #ifdef LOOP_PROB_THREE

687 fprintf(OutputFile, "LOOP_PROB_THREE, ");
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688 #endif

689

690 #ifdef LOOP_PROB_FOUR

691 fprintf(OutputFile, "LOOP_PROB_FOUR, ");

692 #endif

693

694 #ifdef NO_REPORT

695 fprintf(OutputFile, "NO_REPORT: %llu,", hostA_coeff);

696 #endif

697

698 #ifdef SKEW_START

699 fprintf(OutputFile, "SKEW_START, ");

700 #endif

701

702 #ifdef LEN_CHN_NORM

703 fprintf(OutputFile, "LEN_CHN_NORM, ");

704 #endif

705

706 #ifdef LOOP_FREEZE

707 fprintf(OutputFile, "LOOP_FREEZE, ");

708 #endif

709

710 #ifdef FULL_DATA

711 fprintf(OutputFile, "FULL_DATA");

712 #endif

713

714 fprintf(OutputFile, "\n");

715

716

105



www.manaraa.com

717 #ifdef SIMPLE_SHEAR

718 fprintf(OutputFile,"∗ Simple Shear Flow ",

719 " ∗\n");

720 #else

721 fprintf(OutputFile,"∗ Small Oscillatory Shear Flow ",

722 " ∗\n");

723 #endif

724 #ifdef LOOPED_DUMBBELLS

725 fprintf(OutputFile,"∗ Dumbbell Types: Active, Dangling and Looped ",

726 " ∗\n");

727 #else

728 fprintf(OutputFile,"∗ Dumbbell Types: Active, and Dangling ",

729 " ∗\n");

730 #endif

731

732 #ifdef RAW_OUT

733 fprintf(OutputFile,"∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Has Raw Output Bin File",

734 " ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n");

735 #else

736 fprintf(OutputFile,"∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗",

737 "∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n");

738 #endif

739

740

741 #ifdef NO_REPORT

742 fprintf(OutputFile,"Total_Time: %g \n",

743 hostStepSizeMicroFirst ∗ (hostMacroStepSizeSplitPt − 1) ∗

744 hostTimeStepsMicro + //Stage 1

745 hostStepSizeMicroSecon ∗ hostA_coeff + //Macro Jump
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746 hostStepSizeMicroSecon ∗

747 (hostTimeStepsMacro − hostMacroStepSizeSplitPt )

748 ∗ hostTimeStepsMicro ); //Stage 2

749 #else

750 fprintf(OutputFile,"Total_Time: %g \n", (hostStepSizeMicroFirst ∗

751 hostMacroStepSizeSplitPt + hostStepSizeMicroSecon ∗

752 (hostTimeStepsMacro − hostMacroStepSizeSplitPt)) ∗

753 hostTimeStepsMicro );

754 #endif

755 fprintf(OutputFile,"Total_Number_of_Macro_Steps: %u\n",

756 hostTimeStepsMacro);

757 fprintf(OutputFile,"Micro_Steps_Per_Macro_Iteration: %u\n",

758 hostTimeStepsMicro);

759 fprintf(OutputFile,"Macro_Step_Size_Split_Point: %u\n",

760 hostMacroStepSizeSplitPt);

761 fprintf(OutputFile,"Micro_Step_Size_One: %1.12g\n",

762 hostStepSizeMicroFirst);

763 fprintf(OutputFile,"Macro_Step_Size_One: %1.12g\n",

764 hostStepSizeMicroFirst ∗ hostTimeStepsMicro);

765 fprintf(OutputFile,"Number_of_Macro_Steps_Stage_One: %u\n",

766 hostMacroStepSizeSplitPt);

767 fprintf(OutputFile,"Stage_One_Total_Time: %1.12g\n",

768 hostStepSizeMicroFirst ∗ hostTimeStepsMicro ∗

769 hostMacroStepSizeSplitPt);

770 fprintf(OutputFile,"Micro_Step_Size_Two: %1.12g\n",

771 hostStepSizeMicroSecon);

772 fprintf(OutputFile,"Macro_Step_Size_Two: %1.12g\n",

773 hostStepSizeMicroSecon ∗ hostTimeStepsMicro);

774 fprintf(OutputFile,"Number_of_Macro_Steps_Stage_Two: %u\n",
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775 hostTimeStepsMacro − hostMacroStepSizeSplitPt);

776 fprintf(OutputFile,"Stage_Two_Total_Time: %1.12g\n",

777 hostStepSizeMicroSecon ∗ hostTimeStepsMicro ∗

778 (hostTimeStepsMacro − hostMacroStepSizeSplitPt));

779 fprintf(OutputFile,"Number_of_Particles: %u\n", hostNumberOfParticles);

780 fprintf(OutputFile,"Flow_Rate: %g \n", hostFlowRate);

781 fprintf(OutputFile,"Maximum_Spring_Length: %g\n", hostMaxSpringLength );

782 fprintf(OutputFile,"SAOS_Frequency: %g\n", hostFreq );

783 fprintf(OutputFile,"d: %g\n", hostD_free );

784 fprintf(OutputFile,"Z: %g\n", hostZee );

785 fprintf(OutputFile,"Chi: %g\n", hostChi);

786 fprintf(OutputFile,"Alpha: %g\n", hostAlpha);

787 fprintf(OutputFile,"Beta: %g\n", hostBeta);

788 fprintf(OutputFile,"Initial_Active_Ratio: %g\n", Init_Active_Ratio);

789 fprintf(OutputFile,"Initial_Dangling_Ratio: %g\n", Init_Dangle_Ratio);

790 fprintf(OutputFile,"Initial_Looped_Ratio: %g\n",

791 1−Init_Dangle_Ratio−Init_Active_Ratio);

792 #ifdef NO_REPORT

793 fprintf(OutputFile,"Macro_Step_Jump: %llu\n", hostA_coeff);

794 #else

795 fprintf(OutputFile,"A_Coefficient: %g\n", hostA_coeff);

796 #endif

797 fprintf(OutputFile,"B_Coefficient: %g\n", hostB_coeff);

798 fprintf(OutputFile,"Runtime: %g\n", time_spent);

799

800

801 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

802

803
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804 /∗Nicer table output ∗/

805

806 fprintf(OutputFile," %20s," , "Time");

807 fprintf(OutputFile," %20s," , "StressXX");

808 fprintf(OutputFile," %20s," , "StressXY");

809 fprintf(OutputFile," %20s," , "StressYY");

810 fprintf(OutputFile," %20s," , "Active_Stress_XX");

811 fprintf(OutputFile," %20s," , "Active_Stress_XY");

812 fprintf(OutputFile," %20s," , "Active_Stress_YY");

813 fprintf(OutputFile," %20s," , "Dangle_Stress_XX");

814 fprintf(OutputFile," %20s," , "Dangle_Stress_XY");

815 fprintf(OutputFile," %20s," , "Dangle_Stress_YY");

816 fprintf(OutputFile," %20s," , "ActiveRatio");

817 fprintf(OutputFile," %20s," , "DangleRatio");

818 fprintf(OutputFile," %20s," , "LoopedRatio");

819 fprintf(OutputFile," %20s," , "AvgLen.ActiveLen");

820 fprintf(OutputFile," %20s," , "AvgLen.ActiveAng");

821 fprintf(OutputFile," %20s," , "AvgLen.ActiveX");

822 fprintf(OutputFile," %20s," , "AvgLen.ActiveY");

823 fprintf(OutputFile," %20s," , "AvgLen.DangleLen");

824 fprintf(OutputFile," %20s," , "AvgLen.DangleAng");

825 fprintf(OutputFile," %20s," , "AvgLen.DangleX");

826 fprintf(OutputFile," %20s," , "AvgLen.DangleY");

827 fprintf(OutputFile," %20s," , "AvgLen.LoopedLen");

828 fprintf(OutputFile," %20s," , "AvgLen.LoopedAng");

829 fprintf(OutputFile," %20s," , "AvgLen.LoopedX");

830 fprintf(OutputFile," %20s," , "AvgLen.LoopedY");

831 fprintf(OutputFile," %20s," , "Variance.ActiveLen");

832 fprintf(OutputFile," %20s," , "Variance.ActiveAng");
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833 fprintf(OutputFile," %20s," , "Variance.ActiveX");

834 fprintf(OutputFile," %20s," , "Variance.ActiveY");

835 fprintf(OutputFile," %20s," , "Variance.DangleLen");

836 fprintf(OutputFile," %20s," , "Variance.DangleAng");

837 fprintf(OutputFile," %20s," , "Variance.DangleX");

838 fprintf(OutputFile," %20s," , "Variance.DangleY");

839 fprintf(OutputFile," %20s," , "Variance.LoopedLen");

840 fprintf(OutputFile," %20s," , "Variance.LoopedAng");

841 fprintf(OutputFile," %20s," , "Variance.LoopedX");

842 fprintf(OutputFile," %20s," , "Variance.LoopedY");

843 fprintf(OutputFile," %20s," , "AvgSpringLife");

844

845 #ifdef SPEC_CHNG

846 fprintf(OutputFile," %20s," , "Dng2Act");

847 fprintf(OutputFile," %20s," , "Dng2Lpd");

848 fprintf(OutputFile," %20s," , "Act2Dng");

849 fprintf(OutputFile," %20s," , "Lpd2Dng");

850 #endif

851

852 fprintf(OutputFile," %50s" , "Histogram Bins: Active, Dangle, Looped − ");

853 fprintf(OutputFile,"%d each\n", NumOfBins);

854

855

856

857

858 /∗ write data to file ∗/

859

860 unsigned int k;

861 for (k=0; k<count; k++){
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862 fprintf(OutputFile," % 20.6f," , TimeTrack[k]);

863 fprintf(OutputFile," % 20.10f," , XX[k]);

864 fprintf(OutputFile," % 20.10f," , XY[k]);

865 fprintf(OutputFile," % 20.10f," , YY[k]);

866 fprintf(OutputFile," % 20.10f," , Active_Stress[k].XX);

867 fprintf(OutputFile," % 20.10f," , Active_Stress[k].XY);

868 fprintf(OutputFile," % 20.10f," , Active_Stress[k].YY);

869 fprintf(OutputFile," % 20.10f," , Dangle_Stress[k].XX);

870 fprintf(OutputFile," % 20.10f," , Dangle_Stress[k].XY);

871 fprintf(OutputFile," % 20.10f," , Dangle_Stress[k].YY);

872 fprintf(OutputFile," % 20.6f," , ActiveRatio[k]);

873 fprintf(OutputFile," % 20.6f," , DangleRatio[k]);

874 fprintf(OutputFile," % 20.6f," , LoopedRatio[k]);

875 fprintf(OutputFile," % 20.6f," , AvgLen[k].ActiveLen);

876 fprintf(OutputFile," % 20.6f," , AvgLen[k].ActiveAng);

877 fprintf(OutputFile," % 20.6f," , AvgLen[k].ActiveX);

878 fprintf(OutputFile," % 20.6f," , AvgLen[k].ActiveY);

879 fprintf(OutputFile," % 20.6f," , AvgLen[k].DangleLen);

880 fprintf(OutputFile," % 20.6f," , AvgLen[k].DangleAng);

881 fprintf(OutputFile," % 20.6f," , AvgLen[k].DangleX);

882 fprintf(OutputFile," % 20.6f," , AvgLen[k].DangleY);

883 fprintf(OutputFile," % 20.6f," , AvgLen[k].LoopedLen);

884 fprintf(OutputFile," % 20.6f," , AvgLen[k].LoopedAng);

885 fprintf(OutputFile," % 20.6f," , AvgLen[k].LoopedX);

886 fprintf(OutputFile," % 20.6f," , AvgLen[k].LoopedY);

887 fprintf(OutputFile," % 20.6f," , Variance[k].ActiveLen);

888 fprintf(OutputFile," % 20.6f," , Variance[k].ActiveAng);

889 fprintf(OutputFile," % 20.6f," , Variance[k].ActiveX);

890 fprintf(OutputFile," % 20.6f," , Variance[k].ActiveY);
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891 fprintf(OutputFile," % 20.6f," , Variance[k].DangleLen);

892 fprintf(OutputFile," % 20.6f," , Variance[k].DangleAng);

893 fprintf(OutputFile," % 20.6f," , Variance[k].DangleX);

894 fprintf(OutputFile," % 20.6f," , Variance[k].DangleY);

895 fprintf(OutputFile," % 20.6f," , Variance[k].LoopedLen);

896 fprintf(OutputFile," % 20.6f," , Variance[k].LoopedAng);

897 fprintf(OutputFile," % 20.6f," , Variance[k].LoopedX);

898 fprintf(OutputFile," % 20.6f," , Variance[k].LoopedY);

899 fprintf(OutputFile," % 20.6f," , AvgSpringLife[k]);

900

901 #ifdef SPEC_CHNG

902 fprintf(OutputFile," %20u," , Dng2Act[k]);

903 fprintf(OutputFile," %20u," , Dng2Lpd[k]);

904 fprintf(OutputFile," %20u," , Act2Dng[k]);

905 fprintf(OutputFile," %20u," , Lpd2Dng[k]);

906 #endif

907

908

909 for(unsigned int n=0; n<NumOfBins; n++){

910 fprintf(OutputFile," % 12d,", Hist[n][k].Active);

911 }

912 for(unsigned int n=0; n<NumOfBins; n++){

913 fprintf(OutputFile," % 12d,", Hist[n][k].Dangle);

914 }

915 for(unsigned int n=0; n<NumOfBins−1; n++){

916 fprintf(OutputFile," % 12d,", Hist[n][k].Looped);

917 }

918

919 fprintf(OutputFile, " % 12d\n", Hist[NumOfBins−1][k].Looped);
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920

921

922 }

923 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

924

925 fclose(OutputFile);

926

927 }

928

929 /∗

930 ∗ No longer being used

931 ∗ CPU Function: Raw Data

932 ∗

933 ∗ Output all x, y and species data for each dumbbell and write it to

934 ∗ a second raw data csv file.

935 ∗

936 ∗

937 ∗/

938

939 void WriteRawDataFile(double TimeTrack[], Dumbbell ∗RawDBellData[])

940 {

941 FILE ∗RawOutput = NULL;

942 char RawDataFilename[] = RAWDATA_FILENAME;

943

944

945 RawOutput = fopen(RawDataFilename, "w");

946

947 if (RawOutput == NULL)

948 {
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949 fprintf(stderr, "Could not open output file: %s!\n", RawDataFilename);

950 exit(1);

951 }

952

953 for(unsigned int k=0; k<hostTimeStepsMacro+1; k++)

954 {

955 fprintf(RawOutput, "%9.6f, ", TimeTrack[k]);

956 for(unsigned int j=0; j<hostNumberOfParticles; j++)

957 fprintf(RawOutput, "% .2d, % 20.14f, % 20.14f, ",

958 RawDBellData[k][j].type,

959 RawDBellData[k][j].x,

960 RawDBellData[k][j].y);

961 fprintf(RawOutput, "\n");

962 }

963

964

965

966 fclose(RawOutput);

967 }

968

969

970

971

972 //Function:

973 //GPU Function

974 //Caclulates the change of state probability of an active dumbbell

975 //given the spring length

976 //Tao must be commputed each time: See paper, use equations 10 AND 11.

977 __device__ double ActiveToDanglingProb (double SpringLen, double MicroStepSize){
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978

979

980 /∗

981 ∗ These probabilities are based on the reasoning in notebook:

982 ∗ Transition Probability Physical Argugments

983 ∗

984 ∗/

985 #ifdef PROB_TEST

986 //transition probabilities held constant

987 return devBeta;

988

989 #else

990 //Normal transition probabilities

991

992

993 double F_fene = SpringLen /

994 ( 1 − SpringLen ∗ SpringLen / devMaxSpringLength / devMaxSpringLength );

995

996

997 return 1 − exp( − devBeta ∗ exp( 0.0325 ∗ abs( F_fene )) ∗ MicroStepSize);

998

999 #endif

1000 }

1001

1002 //Function:

1003 //GPU Function

1004 //Cacluates the change of state probability for a dangling dumbbell.

1005 __device__ double DanglingToActiveProb (double SpringLen, double MicroStepSize){

1006
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1007

1008 #ifdef PROB_TEST

1009 //transition probabilities held constant

1010 return devAlpha;

1011

1012 #else

1013 //Normal transition probabilities

1014

1015 double F_fene = SpringLen /

1016 ( 1 − SpringLen ∗ SpringLen / devMaxSpringLength / devMaxSpringLength );

1017

1018 return 1.0 − exp( − devAlpha ∗ SpringLen ∗ F_fene ∗ MicroStepSize );

1019 #endif

1020 }

1021

1022 //Function:

1023 //GPU Function

1024 //Calculates the probability of an chain going active becoming

1025 // a loop instead of a bridge

1026 __device__ double DanglingToLoopedProb (double SpringLen,

1027 double MicroStepSize){

1028

1029 #ifdef LOOP_PROB_TWO

1030 double F_fene_two = SpringLen /

1031 ( 1 − (devMaxSpringLength − SpringLen) ∗

1032 (devMaxSpringLength − SpringLen) /

1033 devMaxSpringLength / devMaxSpringLength );

1034

1035 return 1 − exp( − devChi ∗ (devMaxSpringLength − SpringLen)∗
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1036 (devMaxSpringLength − SpringLen) / F_fene_two ∗ MicroStepSize );

1037 #else

1038 #ifdef LOOP_PROB_THREE

1039 double F_fene_two = 1 / ( 1 − (devMaxSpringLength − SpringLen) ∗

1040 (devMaxSpringLength − SpringLen) /

1041 devMaxSpringLength / devMaxSpringLength );

1042

1043 return 1 − exp( − devChi ∗ (devMaxSpringLength − SpringLen) ∗

1044 (devMaxSpringLength − SpringLen) ∗ F_fene_two ∗ MicroStepSize );

1045 #else

1046 #ifdef LOOP_PROB_FOUR

1047 double F_fene_two = 1 / ( 1 − (devMaxSpringLength − SpringLen) ∗

1048 (devMaxSpringLength − SpringLen) /

1049 devMaxSpringLength / devMaxSpringLength );

1050

1051 return 1 − exp( − devChi ∗ SpringLen ∗

1052 (devMaxSpringLength − SpringLen) ∗

1053 (devMaxSpringLength − SpringLen) ∗ F_fene_two ∗ MicroStepSize );

1054 #else

1055 return exp( − SpringLen ∗ SpringLen / devChi ∗ MicroStepSize );

1056 #endif

1057 #endif

1058 #endif

1059

1060

1061

1062 }

1063

1064 //Function:
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1065 //GPU Function

1066 //Calculates the probability looped chain becoming a dangling chain

1067 __device__ double LoopedToDanglingProb (double SpringLen,

1068 double MicroStepSize){

1069

1070 /∗

1071 ∗ These probabilities are based on the reasoning in notebook:

1072 ∗ Proposed Transition Probabilities One

1073 ∗

1074 ∗ This probability doesn’t depend on the length of the dumbbell

1075 ∗ because the behavior of looped dumbbells are not modeled

1076 ∗ [Although there are still some numbers in the simulation].

1077 ∗

1078 ∗/

1079

1080 return 1.0 − exp( − devBeta ∗ MicroStepSize );

1081 }

1082

1083 //Function:

1084 //GPU Function

1085 //Calculate the conditional probability of becoming a loop given

1086 //that a dangling dumbbell does not become active.

1087 __device__ double DangleNotActToLoop (double SpringLen,

1088 double MicroStepSize, int dbell, double time){

1089

1090 double F_fene = SpringLen / ( 1 − SpringLen ∗ SpringLen /

1091 devMaxSpringLength / devMaxSpringLength );

1092

1093
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1094 double cond_prob = exp( − SpringLen ∗ SpringLen ∗

1095 ( 1 / devChi − devAlpha / F_fene ) ∗ MicroStepSize );

1096

1097

1098 if (cond_prob <= 1.0){

1099 return cond_prob;

1100 } else {

1101 return 1.0;

1102 }

1103

1104

1105 }

1106

1107

1108 __device__ double DanglingToAttachProb(double SpringLen, double MicroStepSize){

1109

1110 double AttachProb;

1111 AttachProb = DanglingToActiveProb(SpringLen, MicroStepSize) +

1112 DanglingToLoopedProb(SpringLen,MicroStepSize);

1113

1114 if (AttachProb > 1.0) {

1115 return 1.0;

1116 } else {

1117 return AttachProb;

1118 }

1119

1120 }

1121

1122
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1123

1124 //Function: AttachedLoop

1125 __device__ double AttachedToLoopedProb(double SpringLen, double MicroStepSize){

1126

1127 return DanglingToLoopedProb( SpringLen, MicroStepSize) /

1128 ( DanglingToLoopedProb( SpringLen, MicroStepSize) +

1129 DanglingToActiveProb( SpringLen, MicroStepSize) );

1130

1131 }

1132

1133

1134 //Function: AttachedLoop

1135 __device__ double AttachedToActiveProb(double SpringLen,

1136 double MicroStepSize){

1137

1138 return DanglingToActiveProb( SpringLen, MicroStepSize) /

1139 ( DanglingToLoopedProb( SpringLen, MicroStepSize) +

1140 DanglingToActiveProb( SpringLen, MicroStepSize) );

1141

1142 }

1143

1144

1145 //Function: Evolve

1146 //GPU Function

1147 // Describes how length evolves over the specified time step size

1148 __device__ void Evolve(double ∗SpringLenX, double ∗SpringLenY, double randx,

1149 double randy, double drag_coeff, double ∗SimTime,

1150 double MicroStepSize, double FlowRate){

1151
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1152 double SpringLenXStep, SpringLenYStep;

1153

1154 //__ Intermediate step variables

1155 double SpringLenXOne, SpringLenYOne;

1156 double ItermValueOne, ItermValueTwo;

1157 double LengthLimitingFactor;

1158 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

1159

1160

1161 //____ Non−Dim Evolution Equations for dangling FENE dumbbells __________

1162

1163

1164

1165 #ifdef SIMPLE_SHEAR //Uses a compiler flag to switch to simple_shear

1166

1167 /∗ Simple Shear with Variable Flow Rate ∗/

1168

1169 SpringLenXOne = ∗SpringLenX

1170 + (U11 ∗ ∗SpringLenX + U21 ∗ ∗SpringLenY) ∗ FlowRate ∗ MicroStepSize

1171 + sqrt( drag_coeff ∗ MicroStepSize) ∗ randx;

1172 #else

1173

1174 /∗ Small Amplitude Oscillatory Shear Flow

1175 ∗ with Variable Flow Rate (Allows for equilibrium period)

1176 ∗/

1177

1178 SpringLenXOne = ∗SpringLenX

1179 + (U11 ∗ ∗SpringLenX + U21 ∗ devFreq ∗ cos(devFreq ∗ ∗SimTime) ∗

1180 ∗SpringLenY) ∗ FlowRate ∗ MicroStepSize

121



www.manaraa.com

1181 + sqrt( drag_coeff ∗ MicroStepSize) ∗ randx;

1182

1183 #endif

1184

1185 /∗ note: flow in the y−direction is uneffected ∗/

1186

1187 SpringLenYOne = ∗SpringLenY

1188 + (U12 ∗ ∗SpringLenX + U22 ∗ ∗SpringLenY)

1189 ∗ FlowRate ∗ MicroStepSize

1190 + sqrt( drag_coeff ∗ MicroStepSize) ∗ randy;

1191

1192

1193 LengthLimitingFactor = ( SpringLenXOne ∗ SpringLenXOne +

1194 SpringLenYOne ∗ SpringLenYOne )

1195 / devMaxSpringLength / devMaxSpringLength;

1196

1197 ItermValueOne = 1.0 + 2.0 ∗ drag_coeff ∗ MicroStepSize +

1198 LengthLimitingFactor;

1199

1200 ItermValueTwo = 2 / ( ItermValueOne +

1201 sqrt( ItermValueOne ∗ ItermValueOne − 4 ∗ LengthLimitingFactor) );

1202

1203 SpringLenXStep = sqrt ( ItermValueTwo ) ∗ SpringLenXOne;

1204

1205 SpringLenYStep = sqrt ( ItermValueTwo ) ∗ SpringLenYOne;

1206

1207 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

1208

1209

122



www.manaraa.com

1210 ∗SpringLenX = SpringLenXStep;

1211 ∗SpringLenY = SpringLenYStep;

1212

1213 }

1214

1215 //Function: Micro_Steps

1216 //Loops through the Micro loop of the SDE

1217 #ifdef SPEC_CHNG

1218

1219 __global__ void Micro_Steps( double ∗SpringLenX, double ∗SpringLenY,

1220 int ∗SpeciesType,

1221 curandState ∗states, curandState ∗ProbStates,

1222 double AvgSpringLifes, double ∗SimTime, double MicroStepSize,

1223 unsigned int TimeStepsMicro,

1224 double DangleAvgLen, double FlowRate,

1225 unsigned int ∗Dng2Act, unsigned int ∗Dng2Lpd,

1226 unsigned int ∗Act2Dng, unsigned int ∗Lpd2Dng){

1227

1228 #else

1229 #ifdef MICRO_RAW

1230

1231 __global__ void Micro_Steps( double ∗SpringLenX, double ∗SpringLenY,

1232 int ∗SpeciesType,

1233 curandState ∗states, curandState ∗ProbStates,

1234 double AvgSpringLifes, double ∗SimTime, double MicroStepSize,

1235 unsigned int TimeStepsMicro,

1236 double DangleAvgLen, double FlowRate,

1237 DBSpecChng ∗SCArr, unsigned int NumberOfParticles){

1238 #else
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1239 #ifdef NO_REPORT

1240 __global__ void Micro_Steps( double ∗SpringLenX, double ∗SpringLenY,

1241 int ∗SpeciesType,

1242 curandState ∗states, curandState ∗ProbStates,

1243 double AvgSpringLifes, double ∗SimTime, double MicroStepSize,

1244 unsigned long long TimeStepsMicro,

1245 double DangleAvgLen, double FlowRate){

1246

1247 #else

1248 #ifdef SINGLE_MICRO

1249

1250 __global__ void Micro_Steps( double ∗SpringLenX, double ∗SpringLenY,

1251 int ∗SpeciesType,

1252 curandState ∗states, curandState ∗ProbStates,

1253 double AvgSpringLifes, double ∗SimTime, double MicroStepSize,

1254 unsigned int TimeStepsMicro,

1255 double DangleAvgLen, double FlowRate,

1256 DBSpecChng ∗SCArr, unsigned int NumberOfParticles){

1257 #else

1258 __global__ void Micro_Steps( double ∗SpringLenX, double ∗SpringLenY,

1259 int ∗SpeciesType,

1260 curandState ∗states, curandState ∗ProbStates,

1261 double AvgSpringLifes, double ∗SimTime, double MicroStepSize,

1262 unsigned int TimeStepsMicro,

1263 double DangleAvgLen, double FlowRate){

1264 #endif //SINGLE_MICRO

1265 #endif //NO_REPORT

1266 #endif //MICRO_RAW

1267 #endif //SPEC_CHNG
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1268

1269

1270

1271

1272

1273

1274 int i = threadIdx.x + blockIdx.x ∗ blockDim.x;

1275

1276

1277 //___Device API for Random Number Generation____

1278 //copy state to local state for efficiency

1279 curandState localState = states[i];

1280 curandState localProbState = ProbStates[i];

1281

1282

1283 //___ Calculation values and constants

1284

1285

1286

1287 #ifdef SPEC_CHNG

1288 // set counters to 0

1289 Dng2Act[i]=0;

1290 Dng2Lpd[i]=0;

1291 Act2Dng[i]=0;

1292 Lpd2Dng[i]=0;

1293 #endif

1294

1295

1296 #ifdef MICRO_RAW
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1297 /∗ printf("Thread:%d Precur:%d Time:%f Length:%f \n", i, ∗/

1298 /∗ SCArr[i∗TimeStepsMicro].type, ∗/

1299 /∗ SCArr[i∗TimeStepsMicro].time, ∗/

1300 /∗ SCArr[i∗TimeStepsMicro].length); ∗/

1301 #endif

1302

1303 //___ Node drag value calculations ___

1304

1305 double D_node = 0.5 ∗ devZee ∗ 6.0 ∗ devD_free;

1306 //Equation (25) − non−dimensional

1307

1308 double drag_coeff_active = devD_free / (2 ∗ D_node);

1309 //Nondimensionalized

1310

1311 double drag_coeff_dangle = (D_node + devD_free) / 4.0 / D_node;

1312

1313

1314 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

1315

1316

1317

1318 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

1319

1320

1321 double2 RandNorm;

1322 double RandUniform;

1323

1324 #ifdef LOOPED_DUMBBELLS

1325
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1326 double RandUniform2;

1327

1328

1329 #endif

1330

1331 #ifdef DEBUG

1332 //printf("TimeStepsMicro = %d\n", TimeStepsMicro);

1333 #endif

1334

1335 double SpringLen;

1336 for(unsigned long long j=0; j < TimeStepsMicro; j++){

1337 //changed to unsigned long long for large loop cnts

1338

1339

1340

1341

1342

1343 #ifdef SINGLE_TRACK

1344 if (i==0){

1345 printf("SingleTrack:%f,%d:%f:%f\n",SimTime[i],SpeciesType[i],

1346 SpringLenX[i],SpringLenY[i]);

1347 }

1348 #endif

1349

1350

1351

1352 //generate new random number each time

1353 RandNorm = curand_normal2_double(&localState);

1354 RandUniform = curand_uniform_double(&localProbState);
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1355

1356 #ifdef LOOPED_DUMBBELLS

1357 RandUniform2 = curand_uniform_double(&localProbState);

1358

1359

1360 #endif

1361

1362 #ifdef LEN_CHG

1363 /∗

1364 ∗ Added to check if looped re−entry is responsible for phenomena

1365 ∗ Reinserts loops as randomly angled short dumbbells.

1366 ∗/

1367 double RandUniform3;

1368 double RandUniform4;

1369

1370 RandUniform3 = curand_uniform_double(&localProbState);

1371 RandUniform4 = curand_uniform_double(&localProbState);

1372 #endif

1373

1374

1375 #ifdef LEN_CHN_NORM

1376 /∗

1377 ∗ Reinserts loops with length and orientation from a Gaussian dist.

1378 ∗ Careful using this a short maximum dumbbell length.

1379 ∗/

1380 double2 RandNorm2;

1381 RandNorm2 = curand_normal2_double(&localState);

1382 #endif

1383
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1384

1385

1386

1387 //Calculate Spring Length

1388 SpringLen = sqrt(SpringLenX[i] ∗ SpringLenX[i] +

1389 SpringLenY[i] ∗ SpringLenY[i]);

1390

1391 #ifdef SINGLE_MICRO

1392 //record type, time, and length of each step

1393 if (i==SINGLE_MICRO){

1394 SCArr[j].type = SpeciesType[i];

1395 SCArr[j].time = SimTime[i];

1396 SCArr[j].x = SpringLenX[i];

1397 SCArr[j].y = SpringLenY[i];

1398 }

1399 #endif

1400

1401 #ifdef MICRO_RAW

1402 //record type, time, and length of each step

1403 SCArr[i∗TimeStepsMicro+j].type = SpeciesType[i];

1404 SCArr[i∗TimeStepsMicro+j].length = SpringLen;

1405 #endif

1406

1407

1408

1409 #ifdef LOOPED_DUMBBELLS

1410 switch(SpeciesType[i]) {

1411

1412 case 0: //Active Type
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1413 Evolve(&SpringLenX[i], &SpringLenY[i],

1414 RandNorm.x, RandNorm.y,

1415 drag_coeff_active, &SimTime[i],

1416 MicroStepSize, FlowRate);

1417

1418 if (ActiveToDanglingProb(SpringLen, MicroStepSize) >

1419 RandUniform){

1420 // if threshold prob is higher than uniform rand number then..

1421 SpeciesType[i] = 1; //Change dumbbell to Dangling species

1422 #ifdef SPEC_CHNG

1423 Act2Dng[i]++;

1424 #endif

1425 }

1426

1427 break;

1428

1429 case 1: //Dangling Type

1430

1431 Evolve(&SpringLenX[i], &SpringLenY[i],

1432 RandNorm.x, RandNorm.y,

1433 drag_coeff_dangle, &SimTime[i],

1434 MicroStepSize, FlowRate);

1435

1436

1437 #ifdef COND_PROB_METHOD

1438

1439

1440 if (DanglingToAttachProb(SpringLen, MicroStepSize) >

1441 RandUniform){
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1442 //Dumbbell will become active or looped

1443 if (AttachedToActiveProb(SpringLen, MicroStepSize) >

1444 RandUniform2){

1445 SpeciesType[i] = 0; //Change to Active Dumbbell

1446 } else {

1447 SpeciesType[i] = 2; //Change to Looped Dumbbell

1448 }

1449 }

1450

1451

1452 #else

1453 if ((DanglingToLoopedProb(SpringLen, MicroStepSize) >

1454 RandUniform)

1455 && (DanglingToActiveProb(SpringLen, MicroStepSize) <

1456 RandUniform2)){

1457

1458 SpeciesType[i] = 2; //Change to looped type

1459

1460 } else if ((DanglingToLoopedProb(SpringLen, MicroStepSize) <

1461 RandUniform) && (DanglingToActiveProb(SpringLen, MicroStepSize)

1462 > RandUniform2)){

1463

1464 SpeciesType[i] = 0; //Change to Active species

1465

1466 } //In all other cases dumbbells remain dangling

1467 #endif

1468

1469

1470
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1471 break;

1472

1473 #ifdef LOOP_FREEZE

1474 #else //LOOP_FREEZE

1475 case 2: //Loooped Type

1476

1477 if ( LoopedToDanglingProb(SpringLen, MicroStepSize) >

1478 RandUniform){

1479

1480

1481

1482

1483

1484 #ifdef LEN_CHG

1485 SpringLenX[i] = (RandUniform3 − 0.5) ∗ 2;

1486 SpringLenY[i] = (RandUniform4 − 0.5) ∗ 2;

1487 #endif //LEN_CHG

1488

1489 #ifdef LEN_CHN_NORM

1490

1491 /∗

1492 ∗ Note: There is no failsafe for this loop and it could continue infinitely.

1493 ∗/

1494

1495 do {

1496 SpringLenX[i] = RandNorm2.x;

1497 SpringLenY[i] = RandNorm2.y;

1498 } while ( SpringLenX[i] ∗ SpringLenX[i] +

1499 SpringLenY[i] ∗ SpringLenY[i] >=
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1500 devMaxSpringLength ∗ devMaxSpringLength );

1501

1502 #endif //LEN_CHN_NORM

1503

1504 #ifdef CHK_DNG

1505 printf("New DangleDumbbell[%d] X−len: %f",

1506 " Y−Len: %f Time: %f\n", i, SpringLenX[i], SpringLenY[i],

1507 SimTime[i]);

1508 #endif //CHK_DNG

1509 SpeciesType[i] = 1; //Change to dangling type

1510 #ifdef SPEC_CHNG

1511 Lpd2Dng[i]++;

1512 #endif //SPEC_CHNG

1513 }

1514 break;

1515 #endif //LOOP_FREEZE

1516 }

1517 #else

1518

1519 //Default to two dumbbell types

1520

1521 switch(SpeciesType[i]) {

1522

1523 case 0: //Active Type

1524 Evolve(&SpringLenX[i], &SpringLenY[i], RandNorm.x, RandNorm.y,

1525 drag_coeff_active, &SimTime[i], MicroStepSize, FlowRate);

1526

1527 if (ActiveToDanglingProb(SpringLen, MicroStepSize)

1528 > RandUniform){
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1529 // if threshold prob is higher than uniform rand number then

1530 SpeciesType[i] = 1; //Change dumbbell to Dangling species

1531 #ifdef SPEC_CHNG

1532 Act2Dng[i]++;

1533 #endif

1534 }

1535

1536 break;

1537

1538 case 1: //Dangling Type

1539 Evolve(&SpringLenX[i], &SpringLenY[i],

1540 RandNorm.x, RandNorm.y,

1541 drag_coeff_dangle, &SimTime[i],

1542 MicroStepSize, FlowRate);

1543

1544 if (DanglingToActiveProb(SpringLen, MicroStepSize) > RandUniform){

1545 // if dangling prob is higher than uniform rand number then

1546 SpeciesType[i] = 0; //Change dumbbell to Active species

1547 #ifdef SPEC_CHNG

1548 Dng2Act[i]++;

1549 #endif

1550 }

1551

1552 break;

1553 }

1554

1555 #endif

1556

1557 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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1558

1559 SimTime[i] += MicroStepSize;

1560

1561

1562

1563 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

1564

1565

1566 }

1567

1568 //copy random number generator state back

1569 states[i] = localState;

1570 ProbStates[i] = localProbState;

1571 }

1572

1573 //Function: RandomGenInit

1574 //Initialize the random number generator on each of the threads

1575 //Gives each thread a different seed form ∗SeedList vector

1576 __global__ void RandomGenInit(unsigned long long ∗SeedList,

1577 curandState ∗states){

1578

1579 int tid = blockIdx.x ∗ blockDim.x + threadIdx.x;

1580

1581 //curand_init(SeedList[tid], tid, 0, &states[tid]);

1582 //previous method seems to be quite slow.

1583

1584 curand_init((unsigned long long)SeedList[tid], 0, 0, &states[tid]);

1585

1586 }
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1587

1588

1589 //Function: RndNorm

1590 //CPU Function to transform uniform random variable [0,1] to normal random

1591 //variable with meand 0 and Variance defined in the function

1592 double RndNorm (void){

1593 double Variance = 1;

1594

1595 static int HasSpareRandomNum = 0;

1596 static double SpareRandomNum;

1597

1598 if(HasSpareRandomNum == 1){

1599 HasSpareRandomNum = 0;

1600 return Variance ∗ SpareRandomNum;

1601 }

1602

1603 HasSpareRandomNum = 1;

1604

1605 static double u,v,s;

1606

1607 do{

1608 u = ( rand() / ((double) RAND_MAX)) ∗ 2 − 1;

1609 v = ( rand() / ((double) RAND_MAX)) ∗ 2 − 1;

1610 s = u ∗ u + v ∗ v;

1611 } while (s >= 1 || s == 0);

1612

1613 s = sqrt (−2.0 ∗ log(s) / s);

1614

1615 SpareRandomNum = v ∗ s; //Save spare random number for next function call
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1616

1617 return Variance ∗ u ∗ s;

1618 }

1619

1620

1621

1622 double AvgSpringLife ( double ∗SpringLenX, double ∗SpringLenY,

1623 int ∗SpeciesType){

1624

1625 //TODO: decide on method and clean up debug output

1626 #ifdef NEW_TAU

1627 return 6.0;

1628 #else

1629

1630 #ifdef DEBUG

1631 double Total1 = 0.0;

1632 #endif

1633 double Total2 = 0.0;

1634

1635 double SpringLen;

1636 int ActiveCount = 0;

1637

1638 for (unsigned int j=0; j<hostNumberOfParticles; j++){

1639

1640 if (SpeciesType[j] == 0){ //If active type

1641

1642 ActiveCount++;

1643 SpringLen = sqrt( SpringLenX[j] ∗ SpringLenX[j] +

1644 SpringLenY[j] ∗ SpringLenY[j]);
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1645

1646 //__Hookean Springs__

1647 //Total += Tao_zero ∗ exp (− LITTLE_D ∗ LITTLE_D ∗

1648 // SpringLen ∗ SpringLen / U_ZERO );

1649 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

1650

1651 //__FENE Springs____

1652

1653

1654 #ifdef DEBUG

1655

1656 /∗

1657 ∗ If in debug mode, compute both and compare.

1658 ∗/

1659

1660 Total1 += 2 / hostBeta ∗ exp ( − 0.0325 ∗ abs( SpringLen /

1661 ( 1 − SpringLen ∗ SpringLen /

1662 hostMaxSpringLength / hostMaxSpringLength ) ));

1663

1664 Total2 += TAO_FUND ∗ hostA_coeff ∗

1665 exp ( − ( hostB_coeff ∗ SpringLen ∗ SpringLen ) /

1666 (( 1 − ( SpringLen / hostMaxSpringLength) ∗

1667 ( SpringLen / hostMaxSpringLength) ) ∗

1668 ( 1 − ( SpringLen / hostMaxSpringLength) ∗

1669 ( SpringLen / hostMaxSpringLength) ) )

1670 ); //Eqn (12)

1671 #else

1672

1673 //Hernandez−Cifre Tau Calculation
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1674 Total2 += TAO_FUND ∗ hostA_coeff ∗

1675 exp ( − ( hostB_coeff ∗ SpringLen ∗ SpringLen ) /

1676 (( 1 − ( SpringLen / hostMaxSpringLength) ∗

1677 ( SpringLen / hostMaxSpringLength) ) ∗

1678 ( 1 − ( SpringLen / hostMaxSpringLength) ∗

1679 ( SpringLen / hostMaxSpringLength) ) )

1680 ); //Eqn (12)

1681

1682

1683 #endif //DEBUG

1684

1685

1686 }

1687

1688 }

1689

1690 /∗ Fixed bug were −nan values returned ∗/

1691 /∗

1692 ∗ A second possible solution would be to return

1693 ∗ a value in [5.999 − 6.012] range. As this parameter

1694 ∗ does not seem to vary much. In fact, for speed it

1695 ∗ could be beneficial to simply set this parameter.

1696 ∗

1697 ∗/

1698

1699 if (ActiveCount == 0)

1700 {

1701 /∗

1702 ∗ Instead of exiting out here, return 0 value.
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1703 ∗ Then use zero value to exit main loop.

1704 ∗

1705 ∗ This will hopefully preserve the data up

1706 ∗ until the 0 value is reached.

1707 ∗/

1708

1709 return 0;

1710 }

1711

1712 #ifdef DEBUG

1713 printf("AvgSpringLife...Hernandez−Cife: %f Sing−McKinley: %f \n",

1714 Total2/ActiveCount, Total1/ActiveCount);

1715 #endif //DEBUG

1716

1717

1718

1719 return Total2 / (double) ActiveCount;

1720

1721 #endif //NEW_TAU

1722

1723 }

1724

1725

1726 void SpeciesRatioCount( int SpeciesType[], double ∗ActiveRatio,

1727 double ∗DangleRatio, double ∗LoopedRatio){

1728 unsigned int j;

1729 int NumOfActive=0;

1730 int NumOfDangling=0;

1731 int NumOfLooped=0;
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1732

1733 for (j=0; j<hostNumberOfParticles; j++){

1734

1735 switch (SpeciesType[j]){

1736 case 0:

1737 NumOfActive++;

1738 break;

1739

1740 case 1:

1741 NumOfDangling++;

1742 break;

1743

1744 case 2:

1745 NumOfLooped++;

1746 break;

1747

1748 default:

1749 printf("Error: Undetermined Species Type!\n");

1750 break;

1751

1752 }

1753 }

1754

1755 ∗ActiveRatio = (double)NumOfActive / hostNumberOfParticles;

1756 ∗DangleRatio = (double)NumOfDangling / hostNumberOfParticles;

1757 ∗LoopedRatio = (double)NumOfLooped / hostNumberOfParticles;

1758

1759 }

1760
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1761

1762 //Function

1763 //CPU

1764 //Caluculate Ratios, Return Average Lengths and Variation, Histogram per type.

1765 void Detailed_Info (int SpeciesType[], double SpringLenX[], double SpringLenY[],

1766 SpeciesValue ∗AvgLen, SpeciesValue ∗Variance,

1767 #ifdef NEW_DNG_LN

1768 TwoDimSpring ∗AvgDng,

1769 #endif

1770 int NumOfBins, SpeciesCount ∗∗Hist, int t_step){

1771

1772 //NOTES: ∗AvgLen.Active = AvgLen−>Active

1773

1774 //histogram

1775 int BinNumber = 0;

1776

1777 //Initialize Bins to 0

1778 for(unsigned int i=0; i<NumOfBins; i++){

1779 Hist[i][t_step].Active = 0;

1780 Hist[i][t_step].Dangle = 0;

1781 Hist[i][t_step].Looped = 0;

1782 }

1783

1784

1785

1786 double max = sqrt( 2 ∗ hostMaxSpringLength ∗ hostMaxSpringLength );

1787 double min = 0;

1788

1789

142



www.manaraa.com

1790

1791 double SpringLen = 0.0;

1792 double SpringAng = 0.0;

1793

1794

1795

1796 SpeciesCount NumOf = {0};

1797

1798 /∗

1799 ∗ Need to initialize average lengths to 0.

1800 ∗/

1801 AvgLen−>ActiveLen = 0;

1802 AvgLen−>DangleLen = 0;

1803 AvgLen−>LoopedLen = 0;

1804

1805 AvgLen−>ActiveAng = 0;

1806 AvgLen−>DangleAng = 0;

1807 AvgLen−>LoopedAng = 0;

1808

1809 AvgLen−>ActiveX = 0;

1810 AvgLen−>DangleX = 0;

1811 AvgLen−>LoopedX = 0;

1812 AvgLen−>ActiveY = 0;

1813 AvgLen−>DangleY = 0;

1814 AvgLen−>LoopedY = 0;

1815

1816 Variance−>ActiveLen = 0;

1817 Variance−>DangleLen = 0;

1818 Variance−>LoopedLen = 0;
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1819

1820 Variance−>ActiveAng = 0;

1821 Variance−>DangleAng = 0;

1822 Variance−>LoopedAng = 0;

1823

1824 Variance−>ActiveX = 0;

1825 Variance−>DangleX = 0;

1826 Variance−>LoopedX = 0;

1827 Variance−>ActiveY = 0;

1828 Variance−>DangleY = 0;

1829 Variance−>LoopedY = 0;

1830

1831 NumOf.Active = 0;

1832 NumOf.Dangle = 0;

1833 NumOf.Looped = 0;

1834

1835

1836 #ifdef NEW_DNG_LN

1837 AvgDng−>x = 0;

1838 AvgDng−>y = 0

1839 #endif

1840

1841

1842 for (unsigned int j=0; j<hostNumberOfParticles; j++){

1843

1844 SpringLen = sqrt( SpringLenX[j] ∗ SpringLenX[j] +

1845 SpringLenY[j] ∗ SpringLenY[j] );

1846

1847
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1848 BinNumber = (int)(( SpringLen − min) / ((max−min)/ NumOfBins));

1849

1850

1851 switch (SpeciesType[j]){

1852 case 0:

1853 //Average Length

1854 NumOf.Active++;

1855 AvgLen−>ActiveLen += SpringLen;

1856 AvgLen−>ActiveAng += atan(SpringLenY[j] / SpringLenX[j]);

1857 AvgLen−>ActiveX += SpringLenX[j];

1858 AvgLen−>ActiveY += SpringLenY[j];

1859 Hist[BinNumber][t_step].Active++;

1860

1861 break;

1862

1863 case 1:

1864 //Average Length

1865 NumOf.Dangle++;

1866 AvgLen−>DangleLen += SpringLen;

1867 AvgLen−>DangleAng += atan(SpringLenY[j] / SpringLenX[j]);

1868 AvgLen−>DangleX += SpringLenX[j];

1869 AvgLen−>DangleY += SpringLenY[j];

1870 Hist[BinNumber][t_step].Dangle++;

1871 #ifdef NEW_DNG_LN

1872 AvgDng−>x += SpringLenX[j];

1873 AvgDng−>y += SpringLenY[j];

1874 #endif

1875 break;

1876
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1877 case 2:

1878 //Average Length

1879 NumOf.Looped++;

1880 AvgLen−>LoopedLen += SpringLen;

1881 AvgLen−>LoopedAng += atan(SpringLenY[j] / SpringLenX[j]);

1882 AvgLen−>LoopedX += SpringLenX[j];

1883 AvgLen−>LoopedY += SpringLenY[j];

1884 Hist[BinNumber][t_step].Looped++;

1885

1886 break;

1887

1888 default:

1889 printf("Error: Undetermined Species Type!\n");

1890 break;

1891

1892 }

1893 }

1894

1895

1896 #ifdef NEW_DNG_LN

1897 AvgDng−>x = AvgDng−>x / NumOf.Dangle;

1898 AvgDng−>y = AvgDng−>y / NumOf.Dangle;

1899 #endif

1900

1901

1902 if ((AvgLen−>ActiveLen/NumOf.Active > hostMaxSpringLength) ||

1903 (AvgLen−>DangleLen/NumOf.Dangle> hostMaxSpringLength) ||

1904 (AvgLen−>LoopedLen/NumOf.Looped > hostMaxSpringLength)){

1905 printf("Average Length − Active[%f] Dangling[%f] Looped[%f]\n",
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1906 AvgLen−>ActiveLen, AvgLen−>DangleLen, AvgLen−>LoopedLen);

1907 printf("NumofActive: %d NumofDangle: %d NumofLooped: %d \n",

1908 NumOf.Active, NumOf.Dangle, NumOf.Looped);

1909 }

1910

1911

1912

1913 if (NumOf.Active == 0){

1914 AvgLen−>ActiveLen = 0;

1915 AvgLen−>ActiveAng = 0;

1916 AvgLen−>ActiveX = 0;

1917 AvgLen−>ActiveY = 0;

1918 } else {

1919 AvgLen−>ActiveLen = (double) AvgLen−>ActiveLen / NumOf.Active;

1920 AvgLen−>ActiveAng = (double) AvgLen−>ActiveAng / NumOf.Active;

1921 AvgLen−>ActiveX = (double) AvgLen−>ActiveX / NumOf.Active;

1922 AvgLen−>ActiveY = (double) AvgLen−>ActiveY / NumOf.Active;

1923 }

1924

1925 if (NumOf.Dangle == 0){

1926 AvgLen−>DangleLen = 0;

1927 AvgLen−>DangleAng = 0;

1928 AvgLen−>DangleX = 0;

1929 AvgLen−>DangleY = 0;

1930 } else {

1931 AvgLen−>DangleLen = (double) AvgLen−>DangleLen / NumOf.Dangle;

1932 AvgLen−>DangleAng = (double) AvgLen−>DangleAng / NumOf.Dangle;

1933 AvgLen−>DangleX = (double) AvgLen−>DangleX / NumOf.Dangle;

1934 AvgLen−>DangleY = (double) AvgLen−>DangleY / NumOf.Dangle;
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1935 }

1936

1937 if (NumOf.Looped == 0){

1938 AvgLen−>LoopedLen = 0;

1939 AvgLen−>LoopedAng = 0;

1940 AvgLen−>LoopedX = 0;

1941 AvgLen−>LoopedY = 0;

1942 } else {

1943 AvgLen−>LoopedLen = (double) AvgLen−>LoopedLen / NumOf.Looped;

1944 AvgLen−>LoopedAng = (double) AvgLen−>LoopedAng / NumOf.Looped;

1945 AvgLen−>LoopedX = (double) AvgLen−>LoopedX / NumOf.Looped;

1946 AvgLen−>LoopedY = (double) AvgLen−>LoopedY / NumOf.Looped;

1947 }

1948

1949

1950 /∗

1951 ∗ Calculate Variance

1952 ∗

1953 ∗/

1954

1955 for (unsigned int j=0; j<hostNumberOfParticles; j++){

1956

1957 SpringLen = sqrt( SpringLenX[j] ∗ SpringLenX[j] +

1958 SpringLenY[j] ∗ SpringLenY[j] );

1959 SpringAng = atan( SpringLenY[j] / SpringLenX[j]);

1960

1961 switch (SpeciesType[j]){

1962 case 0:

1963 Variance−>ActiveLen += (SpringLen − AvgLen−>ActiveLen) ∗
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1964 (SpringLen − AvgLen−>ActiveLen);

1965 Variance−>ActiveAng += (SpringAng − AvgLen−>ActiveAng) ∗

1966 (SpringAng − AvgLen−>ActiveAng);

1967 Variance−>ActiveX += (SpringLenX[j] − AvgLen−>ActiveX) ∗

1968 (SpringLenX[j] − AvgLen−>ActiveX);

1969 Variance−>ActiveY += (SpringLenY[j] − AvgLen−>ActiveY) ∗

1970 (SpringLenY[j] − AvgLen−>ActiveY);

1971 break;

1972

1973 case 1:

1974 Variance−>DangleLen += (SpringLen − AvgLen−>DangleLen) ∗

1975 (SpringLen − AvgLen−>DangleLen);

1976 Variance−>DangleAng += (SpringAng − AvgLen−>DangleAng) ∗

1977 (SpringAng − AvgLen−>DangleAng);

1978 Variance−>DangleX += (SpringLenX[j] − AvgLen−>DangleX) ∗

1979 (SpringLenX[j] − AvgLen−>DangleX);

1980 Variance−>DangleY += (SpringLenY[j] − AvgLen−>DangleY) ∗

1981 (SpringLenY[j] − AvgLen−>DangleY);

1982 break;

1983

1984 case 2:

1985 Variance−>LoopedLen += (SpringLen − AvgLen−>LoopedLen) ∗

1986 (SpringLen − AvgLen−>LoopedLen);

1987 Variance−>LoopedAng += (SpringAng − AvgLen−>LoopedAng) ∗

1988 (SpringAng − AvgLen−>LoopedAng);

1989 Variance−>LoopedX += (SpringLenX[j] − AvgLen−>LoopedX) ∗

1990 (SpringLenX[j] − AvgLen−>LoopedX);

1991 Variance−>LoopedY += (SpringLenY[j] − AvgLen−>LoopedY) ∗

1992 (SpringLenY[j] − AvgLen−>LoopedY);
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1993 break;

1994

1995 default:

1996 printf("Error: Undetermined Species Type!\n");

1997 break;

1998

1999 }

2000 }

2001

2002

2003 if (NumOf.Active == 0){

2004 Variance−>ActiveLen = 0.0;

2005 Variance−>ActiveAng = 0.0;

2006 Variance−>ActiveX = 0.0;

2007 Variance−>ActiveY = 0.0;

2008 } else {

2009 Variance−>ActiveLen = (double) Variance−>ActiveLen / NumOf.Active;

2010 Variance−>ActiveAng = (double) Variance−>ActiveAng / NumOf.Active;

2011 Variance−>ActiveX = (double) Variance−>ActiveX / NumOf.Active;

2012 Variance−>ActiveY = (double) Variance−>ActiveY / NumOf.Active;

2013 }

2014

2015 if (NumOf.Dangle == 0){

2016 Variance−>DangleLen = 0.0;

2017 Variance−>DangleAng = 0.0;

2018 Variance−>DangleX = 0.0;

2019 Variance−>DangleY = 0.0;

2020 } else {

2021 Variance−>DangleLen = (double) Variance−>DangleLen / NumOf.Dangle;
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2022 Variance−>DangleAng = (double) Variance−>DangleAng / NumOf.Dangle;

2023 Variance−>DangleX = (double) Variance−>DangleX / NumOf.Dangle;

2024 Variance−>DangleY = (double) Variance−>DangleY / NumOf.Dangle;

2025 }

2026

2027 if (NumOf.Looped == 0){

2028 Variance−>LoopedLen = 0.0;

2029 Variance−>LoopedAng = 0.0;

2030 Variance−>LoopedX = 0.0;

2031 Variance−>LoopedY = 0.0;

2032 } else {

2033 Variance−>LoopedLen = (double) Variance−>LoopedLen / NumOf.Looped;

2034 Variance−>LoopedAng = (double) Variance−>LoopedAng / NumOf.Looped;

2035 Variance−>LoopedX = (double) Variance−>LoopedX / NumOf.Looped;

2036 Variance−>LoopedY = (double) Variance−>LoopedY / NumOf.Looped;

2037 }

2038

2039

2040

2041 }

2042

2043

2044

2045

2046

2047

2048 // Function:

2049 // CPU Function

2050 // Given Types, X and Y lengths, calculate ensemble
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2051 // average stress XX, XY, and YY.

2052 void EnsembleAverage (int SpeciesType[], double SpringLenX[],

2053 double SpringLenY[],

2054 struct Stress ∗TotalStress, struct Stress ∗Active,

2055 struct Stress ∗Dangling, int k){

2056

2057 /∗

2058 ∗ Notes on Stress Calculation

2059 ∗

2060 ∗ Weighted average calculated based on real−time numbers of active and

2061 ∗ dangling dumbbells. Simplifaction causes division in the mean

2062 ∗ calculation by the number of each type to cancel with the weighting

2063 ∗ average factor. Leaving only division by the total number

2064 ∗ of dumbbells.

2065 ∗

2066 ∗ see the calculations in StressCalculation.pdf

2067 ∗

2068 ∗/

2069

2070 Active[k].XX = 0;

2071 Active[k].XY = 0;

2072 Active[k].YY = 0;

2073

2074 Dangling[k].XX = 0;

2075 Dangling[k].XY = 0;

2076 Dangling[k].YY = 0;

2077

2078

2079 TotalStress[k].XX = 0;
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2080 TotalStress[k].XY = 0;

2081 TotalStress[k].YY = 0;

2082

2083 double LengthLimiter = 1.0;

2084 int NumberOfActive = 0;

2085 int NumberOfDangle = 0;

2086

2087 /∗ DEBUG ∗/

2088 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

2089 int ErrorFlag_ZeroSpringLength = 0;

2090 int ZeroSpringCount = 0;

2091 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

2092

2093 /∗

2094 ∗ DETAILED METHOD

2095 ∗

2096 ∗ It is also possible to simplify this calculation further if necessary.

2097 ∗ However, this method is tested and provides additional information

2098 ∗ To be exact, this methods shows stress contribution from each type

2099 ∗ of dumbbell, and the total stress.

2100 ∗/

2101

2102

2103 for (unsigned int j=0; j<hostNumberOfParticles; j++){

2104

2105 /∗ DEBUG ∗/

2106 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

2107 ZeroSpringCount = 0;

2108 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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2109

2110

2111 switch (SpeciesType[j]){

2112

2113 case 0:

2114 NumberOfActive++;

2115

2116 //__FENE Springs_____

2117

2118 LengthLimiter =

2119 (1.0 − (SpringLenX[j] ∗ SpringLenX[j]

2120 + SpringLenY[j] ∗ SpringLenY[j])

2121 / (hostMaxSpringLength∗hostMaxSpringLength));

2122

2123 Active[k].XX += SpringLenX[j] ∗ SpringLenX[j] / LengthLimiter;

2124 Active[k].XY += SpringLenX[j] ∗ SpringLenY[j] / LengthLimiter;

2125 Active[k].YY += SpringLenY[j] ∗ SpringLenY[j] / LengthLimiter;

2126

2127 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2128 /∗ DEBUG ∗/

2129 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

2130 if ((SpringLenX[j] == 0 ) && (SpringLenY[j] == 0))

2131 {

2132 ErrorFlag_ZeroSpringLength = 1;

2133 ZeroSpringCount++;

2134 }

2135 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

2136 break;

2137
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2138 case 1:

2139 NumberOfDangle++;

2140

2141 //__FENE Springs_____

2142

2143 LengthLimiter =

2144 (1.0 − (SpringLenX[j] ∗ SpringLenX[j]

2145 + SpringLenY[j] ∗ SpringLenY[j])

2146 / (hostMaxSpringLength∗hostMaxSpringLength));

2147

2148 Dangling[k].XX += SpringLenX[j] ∗ SpringLenX[j] / LengthLimiter;

2149 Dangling[k].XY += SpringLenX[j] ∗ SpringLenY[j] / LengthLimiter;

2150 Dangling[k].YY += SpringLenY[j] ∗ SpringLenY[j] / LengthLimiter;

2151

2152 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2153 /∗ DEBUG ∗/

2154 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

2155 if ((SpringLenX[j] == 0 ) && (SpringLenY[j] == 0))

2156 {

2157 ErrorFlag_ZeroSpringLength = 1;

2158 ZeroSpringCount++;

2159 }

2160 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

2161

2162 break;

2163

2164 case 2:

2165 break;

2166
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2167 default:

2168 printf("Error: Unable to Classify Species Type[%d] Of Dumbbell[%d]\n",

2169 SpeciesType[j], j);

2170 exit(4);

2171 }

2172 }

2173

2174

2175 if (NumberOfActive == 0){

2176 TotalStress[k].XX = − 2.0 / (double) hostNumberOfParticles ∗

2177 Dangling[k].XX;

2178 TotalStress[k].XY = − 2.0 / (double) hostNumberOfParticles ∗

2179 Dangling[k].XY;

2180 TotalStress[k].YY = − 2.0 / (double) hostNumberOfParticles ∗

2181 Dangling[k].YY;

2182

2183 Active[k].XX = 0;

2184 Active[k].XY = 0;

2185 Active[k].YY = 0;

2186

2187 Dangling[k].XX = − 2.0 / (double) hostNumberOfParticles ∗

2188 Dangling[k].XX;

2189 Dangling[k].XY = − 2.0 / (double) hostNumberOfParticles ∗

2190 Dangling[k].XY;

2191 Dangling[k].YY = − 2.0 / (double) hostNumberOfParticles ∗

2192 Dangling[k].YY;

2193

2194

2195 } else {
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2196 if (NumberOfDangle == 0){

2197 TotalStress[k].XX = − 2.0 / (double) hostNumberOfParticles ∗

2198 ( Active[k].XX );

2199 TotalStress[k].XY = − 2.0 / (double) hostNumberOfParticles ∗

2200 ( Active[k].XY );

2201 TotalStress[k].YY = − 2.0 / (double) hostNumberOfParticles ∗

2202 ( Active[k].YY );

2203

2204 Active[k].XX = − 2.0 / (double) hostNumberOfParticles ∗

2205 Active[k].XX;

2206 Active[k].XY = − 2.0 / (double) hostNumberOfParticles ∗

2207 Active[k].XY;

2208 Active[k].YY = − 2.0 / (double) hostNumberOfParticles ∗

2209 Active[k].YY;

2210

2211 Dangling[k].XX = 0;

2212 Dangling[k].XY = 0;

2213 Dangling[k].YY = 0;

2214

2215

2216 } else {

2217 TotalStress[k].XX = − 2.0 / (double) hostNumberOfParticles ∗

2218 ( Active[k].XX + Dangling[k].XX );

2219 TotalStress[k].XY = − 2.0 / (double) hostNumberOfParticles ∗

2220 ( Active[k].XY + Dangling[k].XY );

2221 TotalStress[k].YY = − 2.0 / (double) hostNumberOfParticles ∗

2222 ( Active[k].YY + Dangling[k].YY );

2223

2224 Active[k].XX = − 2.0 / (double) hostNumberOfParticles ∗
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2225 Active[k].XX;

2226 Active[k].XY = − 2.0 / (double) hostNumberOfParticles ∗

2227 Active[k].XY;

2228 Active[k].YY = − 2.0 / (double) hostNumberOfParticles ∗

2229 Active[k].YY;

2230

2231 Dangling[k].XX = − 2.0 / (double) hostNumberOfParticles ∗

2232 Dangling[k].XX;

2233 Dangling[k].XY = − 2.0 / (double) hostNumberOfParticles ∗

2234 Dangling[k].XY;

2235 Dangling[k].YY = − 2.0 / (double) hostNumberOfParticles ∗

2236 Dangling[k].YY;

2237

2238 }

2239 }

2240

2241

2242 /∗

2243 ∗ END DETAILED METHOD

2244 ∗/

2245

2246

2247 /∗ DEBUG ∗/

2248 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

2249 if (ErrorFlag_ZeroSpringLength)

2250 printf("%d Active or Dangling springs had zero length at",

2251 " time step %d\n", ZeroSpringCount, k);

2252 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

2253
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2254

2255 }

2256

2257

2258 int RawOut_OSFlow(int loop_step){

2259

2260 /∗

2261 ∗ For Oscillatory Shear Flow

2262 ∗ Sample the last <Cycle_Num> cycles of the simutlation.

2263 ∗ Records dumbbell positions and types for 100 snap shots during simulation.

2264 ∗

2265 ∗/

2266

2267

2268 int Cycle_Num = 2; //take snap shots over final two cycles

2269

2270 double Time = Cycle_Num ∗ 2 ∗ M_PI / hostFreq; //second for Cycle_Num cycles

2271

2272 double MacroSizeStg2 = hostStepSizeMicroSecon ∗ hostTimeStepsMicro;

2273 //seconds per Macro step in stage 2

2274

2275 int MacroStepsXCycle = (int) floor(Time / MacroSizeStg2) + 1;

2276

2277 int StartPt = 0;// = hostTimeStepsMacro − MacroStepsXCycle;

2278

2279 int SampRate = 0; //(int) floor(MacroStepsXCycle / 100);

2280

2281 int NumOfSamples = 200; //desired number of sample snapshots to take.

2282
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2283 int Remdr = 0;

2284

2285

2286 if ((NumOfSamples > MacroStepsXCycle) ||

2287 (NumOfSamples > hostTimeStepsMacro)){

2288 //then sample last NumOfSamples macro steps

2289 StartPt = hostTimeStepsMacro − NumOfSamples;

2290

2291

2292 if (loop_step > StartPt){

2293 return 1; //take raw data snap shot

2294 } else {

2295 return 0;

2296 }

2297

2298 } else {

2299 //evenly space NumOfSamples amoung the final macro steps.

2300 SampRate = (int) floor(MacroStepsXCycle / 200);

2301

2302 StartPt = hostTimeStepsMacro − MacroStepsXCycle;

2303

2304 Remdr = (loop_step − StartPt) % SampRate;

2305

2306

2307 if ((loop_step > StartPt) && (Remdr == 0)){

2308 //printf("[%d]: Take Snapshot!\n",loop_step);

2309 return 1;

2310 } else {

2311 return 0;
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2312 }

2313

2314 }

2315 }

2316

2317

2318 /∗

2319 ∗ For Steady Shear Flow

2320 ∗ Records 100 snapshots of dumbbell positions and types

2321 ∗ at even spaced intervals.

2322 ∗

2323 ∗/

2324

2325 int RawOut_SSFlow(int loop_step){

2326

2327 //For splitting up only the second stage

2328

2329

2330 #ifdef FULL_DATA

2331 int SampleNum = (int) hostTimeStepsMacro / 800;

2332 #else

2333 int SampleNum = (int) hostTimeStepsMacro / 100;

2334 #endif

2335

2336 if (loop_step % SampleNum == 0){

2337 return 1;

2338 } else {

2339 return 0;

2340 }
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2341

2342 }

2343

2344

2345 #ifdef SPEC_CHNG

2346 //sums the entries of a vector

2347 unsigned int VectorSum( unsigned int ∗Vector, unsigned int length){

2348

2349 unsigned int sum = 0;

2350

2351 for(unsigned int n=0; n<length; n++){

2352 sum += Vector[n];

2353 }

2354

2355 return sum;

2356 }

2357 #endif

2358

2359

2360 int main(int argc, char ∗argv[]){

2361

2362 #ifdef DEBUG

2363 printf("START DEBUG MODE\n");

2364 printf("DEBUG: Start Sim\n");

2365 #endif

2366

2367 //_____Record Program Run Time

2368 clock_t begin, end, end2;

2369 begin = clock();
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2370 double time_spent, time_spent2;

2371 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2372

2373

2374 // ____ Read Command Line Arguments _____

2375

2376 if (ParseInput(argc, argv)==EXIT_FAILURE){

2377 //return EXIT_FAILURE;

2378 exit(2);

2379 }

2380 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2381

2382 /∗

2383 ∗ Select GPU Device

2384 ∗/

2385 cudaSetDevice(GPU_select);

2386

2387 PrintSimInfo(); //Output Simulation Variables to Terminal

2388

2389 //−−− Set Global Variable Values −−−−−−−

2390 cudaMemcpyToSymbol(devFlowRate, &hostFlowRate, sizeof(double));

2391 cudaMemcpyToSymbol(devMaxSpringLength, &hostMaxSpringLength,

2392 sizeof(double));

2393 cudaMemcpyToSymbol(devFreq, &hostFreq, sizeof(double));

2394

2395 // additional command line arguments

2396 cudaMemcpyToSymbol(devD_free, &hostD_free, sizeof(double));

2397 cudaMemcpyToSymbol(devZee, &hostZee, sizeof(double));

2398 cudaMemcpyToSymbol(devChi, &hostChi, sizeof(double));
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2399 cudaMemcpyToSymbol(devAlpha, &hostAlpha, sizeof(double));

2400 cudaMemcpyToSymbol(devBeta, &hostBeta, sizeof(double));

2401

2402 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2403

2404

2405 //−−−−define block and thread structure −−−−−

2406 dim3 block;

2407

2408 if (hostNumberOfParticles < 512){

2409 block.x = hostNumberOfParticles;

2410 block.y = 1;

2411 }

2412 else {

2413 block.x=512;

2414 block.y=1;

2415 }

2416

2417 dim3 grid ((hostNumberOfParticles + block.x −1) / block.x,1);

2418 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2419

2420

2421 //__Variables for random number generation on GPU kernels

2422 curandState ∗states = NULL;

2423 curandState ∗ProbStates = NULL;

2424 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2425

2426 //____allocate memory on GPU for random number generator states______

2427 CUDA_CALL(cudaMalloc((void ∗∗)&states, sizeof(curandState) ∗
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2428 hostNumberOfParticles ));

2429 CUDA_CALL(cudaMalloc((void ∗∗)&ProbStates, sizeof(curandState) ∗

2430 hostNumberOfParticles ));

2431 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2432

2433 //__create vectors of seeds_____

2434 unsigned long long ∗hostSeeds = NULL;

2435 unsigned long long ∗devSeeds = NULL;

2436

2437 unsigned long long ∗hostProbSeeds = NULL;

2438 unsigned long long ∗devProbSeeds = NULL;

2439

2440

2441 hostSeeds = (unsigned long long ∗)malloc(hostNumberOfParticles ∗

2442 sizeof(unsigned long long));

2443 hostProbSeeds = (unsigned long long ∗)malloc(hostNumberOfParticles ∗

2444 sizeof(unsigned long long));

2445

2446 /∗

2447 ∗ Verify memory allocated successfully.

2448 ∗/

2449 if (hostSeeds == NULL)

2450 printf("hostSeeds memory error.\n");

2451 if (hostProbSeeds == NULL)

2452 printf("hostProbSeeds memory error.\n");

2453

2454

2455 CUDA_CALL(cudaMalloc((void ∗∗)&devSeeds, sizeof(unsigned long long) ∗

2456 hostNumberOfParticles));
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2457 CUDA_CALL(cudaMalloc((void ∗∗)&devProbSeeds,

2458 sizeof(unsigned long long) ∗

2459 hostNumberOfParticles));

2460

2461 #ifdef FIXED_SEED

2462 srand(1);

2463 #else

2464 srand(time(NULL));

2465 #endif

2466 //Start from one random number and count from there.

2467

2468 hostSeeds[0] = abs(rand());

2469 hostProbSeeds[0] = abs(rand());

2470

2471 for (unsigned int i=1; i<hostNumberOfParticles; i++){

2472 hostSeeds[i] = hostSeeds[i−1] + 1;

2473 hostProbSeeds[i] = hostProbSeeds[i−1] + 1;

2474

2475 }

2476 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2477

2478

2479 CUDA_CALL(cudaMemcpy(devSeeds, hostSeeds, sizeof(unsigned long long) ∗

2480 hostNumberOfParticles, cudaMemcpyHostToDevice));

2481 CUDA_CALL(cudaMemcpy(devProbSeeds, hostProbSeeds,

2482 sizeof(unsigned long long) ∗

2483 hostNumberOfParticles, cudaMemcpyHostToDevice));

2484

2485
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2486 //___initialze kernel random number generator on GPU threads____

2487 RandomGenInit<<< grid, block >>>(devSeeds, states);

2488 gpuErrchk( cudaPeekAtLastError() ); //Error catching

2489 gpuErrchk( cudaDeviceSynchronize() );

2490 //for catching errors. If removed, may give errors from other places

2491 RandomGenInit<<< grid, block >>>(devProbSeeds, ProbStates);

2492 gpuErrchk( cudaPeekAtLastError() );

2493 gpuErrchk( cudaDeviceSynchronize() );

2494 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2495

2496 //____Spring Length variables____

2497 double ∗devSpringLenX = NULL;

2498 double ∗devSpringLenY = NULL;

2499 double ∗hostSpringLenX = NULL;

2500 double ∗hostSpringLenY = NULL;

2501 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2502

2503 //___Dumbbell Species Type Variable___

2504 int ∗devSpeciesType = NULL;

2505 int ∗hostSpeciesType = NULL;

2506 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2507

2508 //_______allocte memory on CPU

2509 hostSpringLenX = (double∗)malloc(hostNumberOfParticles∗sizeof(double));

2510 hostSpringLenY = (double∗)malloc(hostNumberOfParticles∗sizeof(double));

2511 hostSpeciesType = (int∗)malloc(hostNumberOfParticles∗sizeof(int));

2512

2513 if (hostSpringLenX == NULL)

2514 printf("hostSpringLenX memory error.\n");
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2515 if (hostSpringLenY == NULL)

2516 printf("hostSpringLenY memory error.\n");

2517 if (hostSpeciesType == NULL)

2518 printf("hostSpeciesType memory error.\n");

2519 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2520

2521 //_____allocate memory on GPU for spring length

2522 CUDA_CALL(cudaMalloc((double∗∗)&devSpringLenX,

2523 hostNumberOfParticles∗sizeof(double)));

2524 CUDA_CALL(cudaMalloc((double∗∗)&devSpringLenY ,

2525 hostNumberOfParticles∗sizeof(double)));

2526 CUDA_CALL(cudaMalloc((int∗∗)&devSpeciesType,

2527 hostNumberOfParticles∗sizeof(int)));

2528 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2529

2530

2531 //___ initialize memory ____

2532 for(unsigned int n=0; n < hostNumberOfParticles; n++)

2533 {

2534 hostSpringLenX[n] = 0.0;

2535 hostSpringLenY[n] = 0.0;

2536 hostSpeciesType[n] = 0;

2537 }

2538

2539

2540

2541 #ifdef SPEC_CHNG

2542

2543 // Count species changes per macro time step
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2544

2545 unsigned int ∗hostDng2Act = NULL;

2546 unsigned int ∗hostDng2Lpd = NULL;

2547 unsigned int ∗hostAct2Dng = NULL;

2548 unsigned int ∗hostLpd2Dng = NULL;

2549

2550 unsigned int ∗devDng2Act = NULL;

2551 unsigned int ∗devDng2Lpd = NULL;

2552 unsigned int ∗devAct2Dng = NULL;

2553 unsigned int ∗devLpd2Dng = NULL;

2554

2555 hostDng2Act = (unsigned int∗)malloc(hostNumberOfParticles ∗

2556 sizeof(unsigned int));

2557 hostDng2Lpd = (unsigned int∗)malloc(hostNumberOfParticles ∗

2558 sizeof(unsigned int));

2559 hostAct2Dng = (unsigned int∗)malloc(hostNumberOfParticles ∗

2560 sizeof(unsigned int));

2561 hostLpd2Dng = (unsigned int∗)malloc(hostNumberOfParticles ∗

2562 sizeof(unsigned int));

2563

2564 if (hostDng2Act == NULL) printf("hostDng2Act memory error.\n");

2565 if (hostDng2Lpd == NULL) printf("hostDng2Lpd memory error.\n");

2566 if (hostAct2Dng == NULL) printf("hostAct2Dng memory error.\n");

2567 if (hostLpd2Dng == NULL) printf("hostLpd2Dng memory error.\n");

2568

2569 CUDA_CALL(cudaMalloc((unsigned int∗∗)&devDng2Act, hostNumberOfParticles ∗

2570 sizeof(unsigned int)));

2571 CUDA_CALL(cudaMalloc((unsigned int∗∗)&devDng2Lpd, hostNumberOfParticles ∗

2572 sizeof(unsigned int)));
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2573 CUDA_CALL(cudaMalloc((unsigned int∗∗)&devAct2Dng, hostNumberOfParticles ∗

2574 sizeof(unsigned int)));

2575 CUDA_CALL(cudaMalloc((unsigned int∗∗)&devLpd2Dng, hostNumberOfParticles ∗

2576 sizeof(unsigned int)));

2577

2578 for(unsigned int n=0; n < hostNumberOfParticles; n++)

2579 {

2580 hostDng2Act[n] = 0;

2581 hostDng2Lpd[n] = 0;

2582 hostAct2Dng[n] = 0;

2583 hostLpd2Dng[n] = 0;

2584 }

2585

2586 // Save count for each loop

2587 unsigned int ∗Dng2ActSum = NULL;

2588 unsigned int ∗Dng2LpdSum = NULL;

2589 unsigned int ∗Act2DngSum = NULL;

2590 unsigned int ∗Lpd2DngSum = NULL;

2591

2592

2593 Dng2ActSum = (unsigned int∗)malloc((hostTimeStepsMacro+1) ∗

2594 sizeof(unsigned int));

2595 Dng2LpdSum = (unsigned int∗)malloc((hostTimeStepsMacro+1) ∗

2596 sizeof(unsigned int));

2597 Act2DngSum = (unsigned int∗)malloc((hostTimeStepsMacro+1) ∗

2598 sizeof(unsigned int));

2599 Lpd2DngSum = (unsigned int∗)malloc((hostTimeStepsMacro+1) ∗

2600 sizeof(unsigned int));

2601
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2602 if (Dng2ActSum == NULL) printf("Dng2ActSum memory error.\n");

2603 if (Dng2LpdSum == NULL) printf("Dng2LpdSum memory error.\n");

2604 if (Act2DngSum == NULL) printf("Act2DngSum memory error.\n");

2605 if (Lpd2DngSum == NULL) printf("Lpd2DngSum memory error.\n");

2606

2607 #endif

2608

2609 #ifdef SINGLE_MICRO

2610 // Tracks every species transition of every time step (micro)

2611

2612 DBSpecChng ∗hostSCArr = NULL;

2613

2614 DBSpecChng ∗devSCArr = NULL;

2615

2616 hostSCArr = (DBSpecChng ∗) malloc ( hostTimeStepsMicro ∗

2617 sizeof (DBSpecChng));

2618 CUDA_CALL(cudaMalloc((DBSpecChng ∗∗)&devSCArr, hostTimeStepsMicro ∗

2619 sizeof(DBSpecChng)));

2620

2621

2622

2623 // intialize array values to 0

2624

2625 for(unsigned int m=0; m < hostTimeStepsMicro; m++){

2626 hostSCArr[m].type = 0;

2627 hostSCArr[m].time = 0.0;

2628 hostSCArr[m].x = 0.0;

2629 hostSCArr[m].y = 0.0;

2630 }
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2631

2632

2633 CUDA_CALL(cudaMemcpy(devSCArr, hostSCArr,

2634 hostTimeStepsMicro ∗ sizeof(DBSpecChng),

2635 cudaMemcpyHostToDevice));

2636

2637

2638 //file to write data to.

2639

2640 char MicroDataFilename[256];

2641

2642 sprintf(MicroDataFilename, "%s_single_micro.bin", DataFileName);

2643

2644 FILE ∗MicroDataFilePtr = NULL;

2645

2646 MicroDataFilePtr = fopen(MicroDataFilename, "wb");

2647 if (!MicroDataFilePtr) printf("Unable to open micro data file!\n");

2648

2649 size_t MicroData_FileSize; //For checking file size.

2650

2651

2652 #endif

2653

2654 #ifdef MICRO_RAW

2655 // Tracks every species transition of every time step (micro)

2656

2657 DBSpecChng ∗hostSCArr = NULL;

2658

2659 DBSpecChng ∗devSCArr = NULL;
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2660

2661 hostSCArr = (DBSpecChng ∗) malloc ( hostNumberOfParticles ∗

2662 hostTimeStepsMicro ∗ sizeof (DBSpecChng));

2663 CUDA_CALL(cudaMalloc((DBSpecChng ∗∗)&devSCArr, hostNumberOfParticles ∗

2664 hostTimeStepsMicro ∗ sizeof(DBSpecChng)));

2665

2666

2667

2668 // intialize array values to 0

2669

2670 for(unsigned int n=0; n < hostNumberOfParticles; n++){

2671 for(unsigned int m=0; m < hostTimeStepsMicro; m++){

2672 hostSCArr[n∗hostTimeStepsMicro+m].type = 0;

2673 hostSCArr[n∗hostTimeStepsMicro+m].length = 0.0;

2674 }

2675 }

2676

2677

2678 CUDA_CALL(cudaMemcpy(devSCArr, hostSCArr,

2679 hostNumberOfParticles ∗ hostTimeStepsMicro ∗ sizeof(DBSpecChng),

2680 cudaMemcpyHostToDevice));

2681

2682

2683 //file to write data to.

2684

2685 char MicroDataFilename[256];

2686

2687 sprintf(MicroDataFilename, "%s_micro.bin", DataFileName);

2688
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2689 FILE ∗MicroDataFilePtr = NULL;

2690

2691 MicroDataFilePtr = fopen(MicroDataFilename, "wb");

2692 if (!MicroDataFilePtr) printf("Unable to open micro data file!\n");

2693

2694 size_t MicroData_FileSize; //For checking file size.

2695

2696

2697 #endif

2698

2699

2700 //___Simulation Time____

2701 //Variables for tracking time t throughout simulation

2702 //Highest memory cost solution I can think of. There is probably a better way.

2703

2704 /∗

2705 ∗

2706 ∗ First:

2707 ∗ Create dynamically allocated array to store micro time step sizes.

2708 ∗

2709 ∗ Second:

2710 ∗ Transfer only the starting value to the GPU.

2711 ∗ Return only the final value from the GPU.

2712 ∗

2713 ∗

2714 ∗/

2715

2716 double ∗devSimTime = NULL;

2717 double ∗hostSimTime = NULL;
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2718

2719 hostSimTime = (double ∗)malloc(hostNumberOfParticles∗sizeof(double));

2720

2721 if (hostSimTime == NULL)

2722 printf("hostSimTime memory error.\n");

2723

2724 CUDA_CALL(cudaMalloc((double∗∗)&devSimTime,

2725 hostNumberOfParticles∗sizeof(double)));

2726

2727 //___ initialize memory ____

2728 for(unsigned int n=0; n < hostNumberOfParticles; n++)

2729 hostSimTime[n] = 0.0;

2730

2731 CUDA_CALL(cudaMemcpy(devSimTime, hostSimTime,

2732 hostNumberOfParticles∗sizeof(double), cudaMemcpyHostToDevice));

2733 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2734

2735

2736

2737 //___ Set initial Spring Lengths to Normal Distributuion

2738 // "initially... equilibrium Gaussian distribution"

2739

2740

2741 double failsafe = 0.0;

2742

2743 for (unsigned int i=0; i < hostNumberOfParticles; i++){

2744

2745

2746
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2747

2748 if (hostMaxSpringLength < 1){

2749 hostSpringLenX[i] = RndNorm() ∗ hostMaxSpringLength;

2750 //Shrink initial distribution to fit within maximum length

2751 hostSpringLenY[i] = RndNorm() ∗ hostMaxSpringLength;

2752 } else {

2753

2754

2755 #ifdef SKEW_START

2756 /∗

2757 ∗ Start simulations from the V−shape position

2758 ∗ tests to see if this position is a potential well

2759 ∗/

2760 hostSpringLenX[i] = (double) ( RndNorm() + 10 );

2761 hostSpringLenY[i] = (double) ( RndNorm() + 2 );

2762 #else

2763 //___ Set initial length randomly__

2764 hostSpringLenX[i] = RndNorm();

2765 hostSpringLenY[i] = RndNorm();

2766 //Starting from this appears to speed up

2767 // steady state for SAOS

2768 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2769 #endif

2770 }

2771

2772

2773

2774 //__FENE SIM ___ Ensure initial spring lengths are within maximum allowed

2775 // So far this construction seems effective in enforcing the
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2776 // initial condition.

2777

2778 /∗

2779 ∗ This code inside the if can cause a sig fault if the first dumbbell

2780 ∗ doesn’t meet the condition.

2781 ∗/

2782

2783

2784 if ( hostSpringLenX[i] ∗ hostSpringLenX[i] +

2785 hostSpringLenY[i] ∗ hostSpringLenY[i] >

2786 hostMaxSpringLength ∗ hostMaxSpringLength){

2787 if ( i == 0 ) {

2788 printf("First dumbbell did not initialize under maximum length.\n");

2789 printf("Check parameters! Exiting to prevent seg fault.\n");

2790 exit(3);

2791 }

2792 i−−;

2793 failsafe++;

2794 }

2795 if ( failsafe > 4 ∗ hostNumberOfParticles ) {

2796 printf("failed to initialze dumbbells\n");

2797 exit(3);

2798

2799 }

2800 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2801

2802

2803 //___set initial species type__

2804
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2805

2806 /∗

2807 ∗ Initial Species Assignment

2808 ∗

2809 ∗ Active = 0

2810 ∗ Dangling = 1

2811 ∗ Looped = 2

2812 ∗

2813 ∗/

2814

2815 if ( i < hostNumberOfParticles ∗ Init_Active_Ratio ){

2816 hostSpeciesType[i]=0;

2817

2818 } else {

2819

2820 if ( i < hostNumberOfParticles ∗

2821 ( Init_Active_Ratio + Init_Dangle_Ratio ))

2822 {

2823 hostSpeciesType[i]=1;

2824 } else {

2825 hostSpeciesType[i]=2;

2826 }

2827 }

2828

2829

2830 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2831

2832

2833 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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2834

2835 }

2836

2837 printf("Dumbbells Successfully Initialized.\n");

2838

2839 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2840

2841 //____Copy to Gpu device

2842 CUDA_CALL(cudaMemcpy(devSpringLenX, hostSpringLenX,

2843 hostNumberOfParticles∗sizeof(double),

2844 cudaMemcpyHostToDevice));

2845 CUDA_CALL(cudaMemcpy(devSpringLenY, hostSpringLenY,

2846 hostNumberOfParticles∗sizeof(double),

2847 cudaMemcpyHostToDevice));

2848 CUDA_CALL(cudaMemcpy(devSpeciesType, hostSpeciesType,

2849 hostNumberOfParticles∗sizeof(int),

2850 cudaMemcpyHostToDevice));

2851 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2852

2853

2854

2855

2856 //___ initialize variables to calculate and store ensemble average

2857 double ∗Spring_AvgLen_XX = NULL;

2858 double ∗Spring_AvgLen_XY = NULL;

2859 double ∗Spring_AvgLen_YY = NULL;

2860

2861 Spring_AvgLen_XX = (double∗)malloc((hostTimeStepsMacro+1)

2862 ∗ sizeof(double));
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2863 Spring_AvgLen_XY = (double∗)malloc((hostTimeStepsMacro+1)

2864 ∗ sizeof(double));

2865 Spring_AvgLen_YY = (double∗)malloc((hostTimeStepsMacro+1)

2866 ∗ sizeof(double));

2867

2868

2869 if (Spring_AvgLen_XX == NULL)

2870 printf("Spring_AvgLen_XX memory error.\n");

2871 if (Spring_AvgLen_XY == NULL)

2872 printf("Spring_AvgLen_XY memory error.\n");

2873 if (Spring_AvgLen_YY == NULL)

2874 printf("Spring_AvgLen_YY memory error.\n");

2875

2876

2877 //___ initialize memory ____

2878 for(unsigned int n=0; n < hostTimeStepsMacro+1; n++)

2879 {

2880 Spring_AvgLen_XX[n] = 0.0;

2881 Spring_AvgLen_XY[n] = 0.0;

2882 Spring_AvgLen_YY[n] = 0.0;

2883 }

2884

2885

2886 unsigned int k; //iterating variable used for main loop //Why here?

2887

2888 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2889

2890 //___ Track Species Ratios ___

2891 double ∗ActiveRatio = NULL;
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2892 double ∗DangleRatio = NULL;

2893 double ∗LoopedRatio = NULL;

2894

2895 ActiveRatio = (double∗)malloc((hostTimeStepsMacro+1)∗sizeof(double));

2896 DangleRatio = (double∗)malloc((hostTimeStepsMacro+1)∗sizeof(double));

2897 LoopedRatio = (double∗)malloc((hostTimeStepsMacro+1)∗sizeof(double));

2898

2899 if (ActiveRatio == NULL)

2900 printf("ActiveRatio memory error.\n");

2901 if (DangleRatio == NULL)

2902 printf("DangleRatio memory error.\n");

2903 if (LoopedRatio == NULL)

2904 printf("LoopedRatio memory error.\n");

2905

2906 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

2907

2908

2909 //int NumberOfActive = 0;

2910 //int NumberOfDangling = 0;

2911

2912

2913 //__Calculate Ensemble Average at time = 0__

2914 struct Stress ∗Time_k_Stress = NULL;

2915 struct Stress ∗Active_Stress = NULL;

2916 struct Stress ∗Dangle_Stress = NULL;

2917

2918 Time_k_Stress = (Stress∗)malloc((hostTimeStepsMacro+1)∗sizeof(Stress));

2919 Active_Stress = (Stress∗)malloc((hostTimeStepsMacro+1)∗sizeof(Stress));

2920 Dangle_Stress = (Stress∗)malloc((hostTimeStepsMacro+1)∗sizeof(Stress));
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2921

2922 if (Time_k_Stress == NULL)

2923 printf("Time_k_Stress memory error.\n");

2924 if (Active_Stress == NULL)

2925 printf("Active_Stress memory error.\n");

2926 if (Dangle_Stress == NULL)

2927 printf("Dangle_Stress memory error.\n");

2928

2929

2930 //___ initialize memory ____

2931 for(unsigned int n=0; n < hostTimeStepsMacro+1; n++)

2932 {

2933 Time_k_Stress[n].XX = 0.0;

2934 Time_k_Stress[n].XY = 0.0;

2935 Time_k_Stress[n].YY = 0.0;

2936 Active_Stress[n].XX = 0.0;

2937 Active_Stress[n].XY = 0.0;

2938 Active_Stress[n].YY = 0.0;

2939 Dangle_Stress[n].XX = 0.0;

2940 Dangle_Stress[n].XY = 0.0;

2941 Dangle_Stress[n].YY = 0.0;

2942 }

2943

2944 //‘‘‘‘‘‘‘‘‘‘

2945

2946

2947 //__ Initial Species Count ___

2948 SpeciesRatioCount(hostSpeciesType, &ActiveRatio[0], &DangleRatio[0],

2949 &LoopedRatio[0]);
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2950

2951 //___ NEW CODE ___

2952 SpeciesValue ∗AvgLen;

2953 AvgLen = (SpeciesValue∗)malloc((hostTimeStepsMacro+1)∗sizeof(SpeciesValue));

2954

2955 SpeciesValue ∗Variance;

2956 Variance = (SpeciesValue∗)malloc((hostTimeStepsMacro+1) ∗

2957 sizeof(SpeciesValue));

2958

2959

2960 if (AvgLen == NULL)

2961 printf("AvgSpringLife_data memory error.\n");

2962 if (Variance == NULL)

2963 printf("AvgSpringLife_data memory error.\n");

2964

2965 //___ initialize memory ____

2966 for(unsigned int n=0; n < hostTimeStepsMacro+1; n++)

2967 {

2968 AvgLen[n].ActiveLen = 0.0;

2969 AvgLen[n].ActiveX = 0.0;

2970 AvgLen[n].ActiveY = 0.0;

2971 AvgLen[n].DangleLen = 0.0;

2972 AvgLen[n].DangleX = 0.0;

2973 AvgLen[n].DangleY = 0.0;

2974 AvgLen[n].LoopedLen = 0.0;

2975 AvgLen[n].LoopedX = 0.0;

2976 AvgLen[n].LoopedY = 0.0;

2977 Variance[n].ActiveLen = 0.0;

2978 Variance[n].ActiveX = 0.0;
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2979 Variance[n].ActiveY = 0.0;

2980 Variance[n].DangleLen = 0.0;

2981 Variance[n].DangleX = 0.0;

2982 Variance[n].DangleY = 0.0;

2983 Variance[n].LoopedLen = 0.0;

2984 Variance[n].LoopedX = 0.0;

2985 Variance[n].LoopedY = 0.0;

2986 }

2987

2988 /∗

2989 ∗ Store Average Spring Life at each time step

2990 ∗/

2991 double ∗AvgSpringLife_data = NULL;

2992

2993 AvgSpringLife_data = (double∗)malloc((hostTimeStepsMacro+1)

2994 ∗ sizeof(double));

2995

2996 if (AvgSpringLife_data == NULL)

2997 printf("AvgSpringLife_data memory error.\n");

2998

2999 //___ initialize memory ____

3000 for(unsigned int n=0; n < hostTimeStepsMacro+1; n++)

3001 AvgSpringLife_data[n] = 0.0;

3002

3003 /∗

3004 ∗ Histogram tracking:

3005 ∗

3006 ∗ Dynamically allocate 2d struct array as points to pointers

3007 ∗
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3008 ∗ Notes: x−axis = bin number

3009 ∗ y−axis = time

3010 ∗

3011 ∗ Example Active bin2 and time step3: Hist[2][3].Active

3012 ∗

3013 ∗/

3014

3015 int NumOfBins = 100;

3016

3017 SpeciesCount ∗Hist[100] = {NULL}; //Size should correspond to NumOfBins

3018

3019 for(int i=0; i < NumOfBins; i++){

3020 Hist[i]=(SpeciesCount ∗)malloc(sizeof(SpeciesCount) ∗

3021 (hostTimeStepsMacro+1));

3022

3023 if (Hist[i] == NULL)

3024 printf("Hist[%d] memory error.\n",i);

3025

3026 //___ initialize memory ____

3027 for(unsigned int n=0; n < hostTimeStepsMacro+1; n++)

3028 {

3029 Hist[i][n].Active = 0.0;

3030 Hist[i][n].Dangle = 0.0;

3031 Hist[i][n].Looped = 0.0;

3032 }

3033 }

3034

3035

3036 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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3037

3038

3039 #ifdef RAW_OUT

3040

3041 /∗ Write Dumbbell Raw Data

3042 ∗

3043 ∗ Enables the option to write dumbbell positions to

3044 ∗ a binary file at a set interval.

3045 ∗ Filename is the same as the csv file except ∗bin

3046 ∗ appended.

3047 ∗

3048 ∗ Notes: Writes 4+8+8 = 20 bytes for each dumbbell.

3049 ∗ Therefore can quickly result in large files.

3050 ∗

3051 ∗/

3052

3053 char RawDataFilename[256];

3054

3055 sprintf(RawDataFilename, "%s.bin", DataFileName);

3056

3057 FILE ∗RawDataFilePtr = NULL;

3058

3059

3060

3061

3062

3063 long int RawData_FileSize; //for checking file size

3064

3065 if (strcmp(RawData_select,"Yes")==0){
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3066

3067 RawDataFilePtr = fopen(RawDataFilename, "wb");

3068 if (!RawDataFilePtr){

3069 printf("Unable to open raw data file!\n");

3070 }

3071 }

3072

3073 #ifdef DEBUG

3074 printf("DEBUG: RawData Filename = %s\n", RawDataFilename);

3075 printf("DEBUG: int = %zu double = %zu \n", sizeof(int), sizeof(double));

3076 printf("DEBUG: hostNumberOfParticles= %zu\n", hostNumberOfParticles);

3077 #endif

3078 #endif

3079

3080

3081 //____To Caclulate Average Length of all Active Dumbbells___

3082

3083 double ∗hostAverageSpringLife = NULL;

3084 double ∗devAverageSpringLife = NULL;

3085

3086 hostAverageSpringLife = (double ∗)malloc(sizeof(double));

3087 CUDA_CALL(cudaMalloc((double∗∗)&devAverageSpringLife,sizeof(double)));

3088

3089 if (hostAverageSpringLife == NULL)

3090 printf("hostAverageSpringLife memory error.\n");

3091

3092 //___ initialize memory ____

3093 ∗hostAverageSpringLife = 0.0;

3094 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

187



www.manaraa.com

3095

3096

3097

3098 //___ Array to record time steps ___

3099 double ∗TimeTrack = NULL;

3100

3101 TimeTrack = (double∗)malloc((hostTimeStepsMacro+1)∗sizeof(double));

3102

3103 if (TimeTrack == NULL)

3104 printf("TimeTrack memory error.\n");

3105

3106 //_____ Macro Time step Loop ____

3107 // Main simulation loop

3108

3109 double FlowRate = 0; /∗ FlowRate for each stage of simulation ∗/

3110 double MicroStepSize = 0; /∗ Allocs two time step sizes ∗/

3111

3112

3113 /∗

3114 ∗ Time step zero initializations

3115 ∗/

3116 EnsembleAverage(hostSpeciesType, hostSpringLenX, hostSpringLenY,

3117 Time_k_Stress, Active_Stress, Dangle_Stress, 0);

3118

3119

3120

3121 #ifdef NEW_DNG_LN

3122 TwoDimSpring ∗AvgDng;

3123 #endif
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3124

3125

3126 Spring_AvgLen_XX[0] = Time_k_Stress[0].XX;

3127 Spring_AvgLen_XY[0] = Time_k_Stress[0].XY;

3128 Spring_AvgLen_YY[0] = Time_k_Stress[0].YY;

3129

3130

3131 Detailed_Info(hostSpeciesType, hostSpringLenX, hostSpringLenY,

3132 AvgLen, Variance,

3133 #ifdef NEW_DNG_LN

3134 AvgDng,

3135 #endif

3136 NumOfBins, Hist, 0);

3137

3138 #ifdef NEW_DNG_LN

3139 printf("The average dangling length is x: %f y: %f \n",

3140 AvgDng−>x, AvgDng−>y);

3141 #endif

3142

3143

3144

3145

3146 TimeTrack[0]=0.0;

3147

3148 AvgSpringLife_data[0]=AvgSpringLife(hostSpringLenX, hostSpringLenY,

3149 hostSpeciesType);

3150

3151

3152
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3153

3154 #ifdef SPEC_CHNG

3155 // At time step 0 there are no changes

3156 Dng2ActSum[0] = 0;

3157 Dng2LpdSum[0] = 0;

3158 Act2DngSum[0] = 0;

3159 Lpd2DngSum[0] = 0;

3160 #endif

3161

3162

3163 /∗

3164 ∗ Begin main simulation loop

3165 ∗/

3166

3167 for (k=1; k<=hostTimeStepsMacro; k++){

3168

3169 #ifdef DEBUG

3170 printf("DEBUG: Main Loop [%u] ", k);

3171 #endif

3172 //Calculate Average Length of all Active dumbbells

3173 AvgSpringLife_data[k] = AvgSpringLife(hostSpringLenX,

3174 hostSpringLenY,

3175 hostSpeciesType);

3176

3177

3178 if (AvgSpringLife_data[k]==0){

3179 ∗hostAverageSpringLife = AvgSpringLife_data[0];

3180 AvgSpringLife_data[k] = AvgSpringLife_data[0];

3181 } else {
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3182 ∗hostAverageSpringLife = AvgSpringLife_data[k];

3183 }

3184

3185

3186

3187 CUDA_CALL(cudaMemcpy(devAverageSpringLife,

3188 hostAverageSpringLife,

3189 sizeof(double),

3190 cudaMemcpyHostToDevice));

3191

3192 // set micro time step size based on whether the loop is in stage 1 or

3193 // stage 2 of the simulation

3194 /∗

3195 ∗ First stage is designed as zero flow rate. Second stage

3196 ∗ is the inputed flow rate.

3197 ∗ Notes: This is a quick fix for implementing the zero flow rate

3198 ∗ equalizing phase into the simulations.

3199 ∗

3200 ∗/

3201 if ( k < hostMacroStepSizeSplitPt){

3202 MicroStepSize = hostStepSizeMicroFirst;

3203 FlowRate = 0;

3204 #ifdef DEBUG

3205 printf("Stage 1\n");

3206 #endif

3207 } else {

3208 MicroStepSize = hostStepSizeMicroSecon;

3209 FlowRate = hostFlowRate;

3210 #ifdef DEBUG
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3211 printf("Stage 2\n");

3212 #endif

3213 }

3214

3215

3216

3217 #ifdef NO_REPORT

3218 //Time is recorded in the next section when this option is selected

3219 #else

3220 //record time

3221 TimeTrack[k] = TimeTrack[k−1] + MicroStepSize

3222 ∗ hostTimeStepsMicro;

3223 #endif

3224

3225 #ifdef SPEC_CHNG

3226 //Call function to perform computations on GPU

3227 Micro_Steps<<<grid,block>>>(devSpringLenX, devSpringLenY,

3228 devSpeciesType,

3229 states, ProbStates,

3230 AvgSpringLife_data[k],

3231 devSimTime, MicroStepSize,

3232 hostTimeStepsMicro,

3233 AvgLen[k−1].DangleLen, FlowRate,

3234 devDng2Act, devDng2Lpd,

3235 devAct2Dng, devLpd2Dng);

3236 #else

3237 #ifdef MICRO_RAW

3238 //Call function to perform computations on GPU

3239 Micro_Steps<<<grid,block>>>(devSpringLenX, devSpringLenY,
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3240 devSpeciesType,

3241 states, ProbStates,

3242 AvgSpringLife_data[k],

3243 devSimTime, MicroStepSize,

3244 hostTimeStepsMicro,

3245 AvgLen[k−1].DangleLen, FlowRate,

3246 devSCArr, hostNumberOfParticles);

3247 //width in bytes −> hostTimeStepsMicro ∗ sizeof(DBSpecChng)

3248 //height is hostNumberOfParticles

3249

3250 #else

3251 #ifdef NO_REPORT

3252 /∗

3253 ∗ This option ups the number of Microsteps during a single macro loop.

3254 ∗ This has the effect of reducing the amount of CPU−GPU communication

3255 ∗ for the part of the simulation that is not usually used.

3256 ∗/

3257 if (k == hostMacroStepSizeSplitPt){

3258 //record time

3259 TimeTrack[k] = TimeTrack[k−1] + MicroStepSize ∗ hostA_coeff;

3260 //Call function to perform computations on GPU

3261 Micro_Steps<<<grid,block>>>(devSpringLenX, devSpringLenY,

3262 devSpeciesType,

3263 states, ProbStates,

3264 AvgSpringLife_data[k],

3265 devSimTime, MicroStepSize,

3266 hostA_coeff,

3267 AvgLen[k−1].DangleLen, FlowRate);

3268 } else {
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3269 //record time

3270 TimeTrack[k] = TimeTrack[k−1] + MicroStepSize

3271 ∗ hostTimeStepsMicro;

3272 //Call function to perform computations on GPU

3273 Micro_Steps<<<grid,block>>>(devSpringLenX, devSpringLenY,

3274 devSpeciesType,

3275 states, ProbStates,

3276 AvgSpringLife_data[k],

3277 devSimTime, MicroStepSize,

3278 hostTimeStepsMicro,

3279 AvgLen[k−1].DangleLen, FlowRate);

3280 }

3281 #else

3282 #ifdef SINGLE_MICRO

3283 //Call function to perform computations on GPU

3284 Micro_Steps<<<grid,block>>>(devSpringLenX, devSpringLenY,

3285 devSpeciesType,

3286 states, ProbStates,

3287 AvgSpringLife_data[k],

3288 devSimTime, MicroStepSize,

3289 hostTimeStepsMicro,

3290 AvgLen[k−1].DangleLen, FlowRate,

3291 devSCArr, hostNumberOfParticles);

3292 //width in bytes −> hostTimeStepsMicro ∗ sizeof(DBSpecChng)

3293 //height is hostNumberOfParticles

3294 #else

3295 //Call function to perform computations on GPU

3296 Micro_Steps<<<grid,block>>>(devSpringLenX, devSpringLenY,

3297 devSpeciesType,
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3298 states, ProbStates,

3299 AvgSpringLife_data[k],

3300 devSimTime, MicroStepSize,

3301 hostTimeStepsMicro,

3302 AvgLen[k−1].DangleLen, FlowRate);

3303 #endif //SINGLE_MICRO

3304 #endif //NO_REPORT

3305 #endif //MICRO_RAW

3306 #endif //SPEC_CHNG

3307

3308

3309

3310

3311 //read result from gpu(device) back to cpu(host)

3312 CUDA_CALL(cudaMemcpy(hostSpringLenX, devSpringLenX,

3313 hostNumberOfParticles∗sizeof(double),

3314 cudaMemcpyDeviceToHost));

3315 CUDA_CALL(cudaMemcpy(hostSpringLenY, devSpringLenY,

3316 hostNumberOfParticles∗sizeof(double),

3317 cudaMemcpyDeviceToHost));

3318 CUDA_CALL(cudaMemcpy(hostSpeciesType, devSpeciesType,

3319 hostNumberOfParticles∗sizeof(int),

3320 cudaMemcpyDeviceToHost));

3321

3322 //read sim time back from gpu(device) back to cpu(host)

3323 CUDA_CALL(cudaMemcpy(hostSimTime, devSimTime,

3324 hostNumberOfParticles∗sizeof(double),

3325 cudaMemcpyDeviceToHost));

3326
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3327 #ifdef SPEC_CHNG

3328 //read species transitions back from gpu

3329 CUDA_CALL(cudaMemcpy(hostDng2Act, devDng2Act,

3330 hostNumberOfParticles∗sizeof(unsigned int),

3331 cudaMemcpyDeviceToHost));

3332 CUDA_CALL(cudaMemcpy(hostDng2Lpd, devDng2Lpd,

3333 hostNumberOfParticles∗sizeof(unsigned int),

3334 cudaMemcpyDeviceToHost));

3335 CUDA_CALL(cudaMemcpy(hostAct2Dng, devAct2Dng,

3336 hostNumberOfParticles∗sizeof(unsigned int),

3337 cudaMemcpyDeviceToHost));

3338 CUDA_CALL(cudaMemcpy(hostLpd2Dng, devLpd2Dng,

3339 hostNumberOfParticles∗sizeof(unsigned int),

3340 cudaMemcpyDeviceToHost));

3341

3342 //call function that sums the values

3343 Dng2ActSum[k] = VectorSum(hostDng2Act,hostNumberOfParticles);

3344 Dng2LpdSum[k] = VectorSum(hostDng2Lpd,hostNumberOfParticles);

3345 Act2DngSum[k] = VectorSum(hostAct2Dng,hostNumberOfParticles);

3346 Lpd2DngSum[k] = VectorSum(hostLpd2Dng,hostNumberOfParticles);

3347

3348 #endif

3349

3350 #ifdef SINGLE_MICRO

3351

3352 //transfer data back from GPU

3353 CUDA_CALL(cudaMemcpy(hostSCArr, devSCArr,

3354 hostTimeStepsMicro ∗ sizeof(DBSpecChng),

3355 cudaMemcpyDeviceToHost));
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3356

3357 //check file size, error if too big

3358 MicroData_FileSize = ftell(MicroDataFilePtr);

3359

3360

3361 for(unsigned int m=0; m < hostTimeStepsMicro; m++){

3362

3363 if (MicroData_FileSize < MICRODATA_MAX_FILESIZE){

3364 fwrite( &(hostSCArr[m].type),sizeof(int), 1, MicroDataFilePtr);

3365 fwrite( &(hostSCArr[m].time),sizeof(double),1, MicroDataFilePtr);

3366 fwrite( &(hostSCArr[m].x), sizeof(double),1, MicroDataFilePtr);

3367 fwrite( &(hostSCArr[m].y), sizeof(double),1, MicroDataFilePtr);

3368 } else {

3369 printf("WARNING: Micro data file size exceeded maximum. No longer ",

3370 "writing to file. \n");

3371 }

3372 }

3373

3374

3375 #endif

3376

3377 #ifdef MICRO_RAW

3378

3379 //transfer data back from GPU

3380 CUDA_CALL(cudaMemcpy(hostSCArr, devSCArr,

3381 hostNumberOfParticles ∗ hostTimeStepsMicro ∗ sizeof(DBSpecChng),

3382 cudaMemcpyDeviceToHost));

3383

3384 //check file size, error if too big
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3385 MicroData_FileSize = ftell(MicroDataFilePtr);

3386

3387

3388 for(unsigned int n=0; n < hostNumberOfParticles; n++){

3389 for(unsigned int m=0; m < hostTimeStepsMicro; m++){

3390

3391 if (MicroData_FileSize < MICRODATA_MAX_FILESIZE){

3392 fwrite( &(n),

3393 sizeof(unsigned int), 1, MicroDataFilePtr);

3394 fwrite( &(hostSCArr[n∗hostTimeStepsMicro+m].type),

3395 sizeof(int), 1, MicroDataFilePtr);

3396 fwrite( &(hostSCArr[n∗hostTimeStepsMicro+m].length),

3397 sizeof(double), 1, MicroDataFilePtr);

3398 } else {

3399 printf("WARNING: Micro data file size exceeded maximum. No longer ",

3400 "writing to file. \n");

3401 }

3402 }

3403 }

3404

3405

3406 #endif

3407

3408

3409 EnsembleAverage(hostSpeciesType, hostSpringLenX, hostSpringLenY,

3410 Time_k_Stress, Active_Stress, Dangle_Stress,k);

3411

3412 Spring_AvgLen_XX[k] = Time_k_Stress[k].XX;

3413 Spring_AvgLen_XY[k] = Time_k_Stress[k].XY;
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3414 Spring_AvgLen_YY[k] = Time_k_Stress[k].YY;

3415 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

3416

3417

3418 SpeciesRatioCount(hostSpeciesType, &ActiveRatio[k], &DangleRatio[k],

3419 &LoopedRatio[k]);

3420

3421 //___ NEW CODE ___

3422 Detailed_Info (hostSpeciesType, hostSpringLenX, hostSpringLenY,

3423 &AvgLen[k], &Variance[k],

3424 NumOfBins, Hist, k);

3425

3426

3427 #ifdef RAW_OUT

3428

3429 /∗ Write file output directly to file ∗/

3430

3431 #ifdef SIMPLE_SHEAR

3432 if ((strcmp(RawData_select,"Yes")==0) && RawOut_SSFlow(k))

3433 #else

3434

3435 /∗

3436 ∗ FULL_DATA option to allow for 800 steps over entire

3437 ∗ Oscillatory shear simulation

3438 ∗/

3439

3440 #ifdef FULL_DATA

3441 if ((strcmp(RawData_select,"Yes")==0) && RawOut_SSFlow(k))

3442 #else
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3443 //default is oscillatory shear

3444 if ((strcmp(RawData_select,"Yes")==0) && RawOut_OSFlow(k))

3445 #endif

3446 #endif

3447 {

3448

3449 //check file size, error if too big

3450 RawData_FileSize = ftell(RawDataFilePtr);

3451

3452

3453

3454 #ifdef DEBUG

3455 printf("DEBUG: Current file size: %ld\n", RawData_FileSize);

3456 printf("DEBUG: Writing to file: %s on step: %d at time: %f\n",

3457 RawDataFilename, k, TimeTrack[k]);

3458

3459 #endif

3460 if (RawData_FileSize < RAWDATA_MAX_FILESIZE){

3461

3462

3463 fwrite(&(TimeTrack[k]),sizeof(double), 1,

3464 RawDataFilePtr);

3465 fwrite(hostSpeciesType,sizeof(int) ,hostNumberOfParticles,

3466 RawDataFilePtr);

3467 fwrite(hostSpringLenX ,sizeof(double),hostNumberOfParticles,

3468 RawDataFilePtr);

3469 fwrite(hostSpringLenY ,sizeof(double),hostNumberOfParticles,

3470 RawDataFilePtr);

3471 } else {
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3472 printf("WARNING: Raw data file size exceeded %f bytes. No longer ",

3473 "writing to file.\n", RAWDATA_MAX_FILESIZE);

3474 }

3475 }

3476

3477 #endif

3478 }

3479 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘End Macro loop‘‘‘‘‘‘‘‘‘‘‘‘‘‘

3480

3481 #ifdef RAW_OUT

3482

3483 if (strcmp(RawData_select,"Yes")==0){

3484 fclose(RawDataFilePtr);

3485 }

3486

3487 #endif

3488

3489

3490 #ifdef MICRO_RAW

3491 fclose(MicroDataFilePtr);

3492 #endif

3493

3494 #ifdef SINGLE_MICRO

3495 fclose(MicroDataFilePtr);

3496 #endif

3497

3498 // __ stop computational clock ____

3499 end = clock();

3500 time_spent = double(end−begin)/ CLOCKS_PER_SEC;
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3501 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

3502

3503

3504 #ifdef SPEC_CHNG

3505 OutputToFile( Spring_AvgLen_XX, Spring_AvgLen_XY, Spring_AvgLen_YY,

3506 TimeTrack, time_spent, k, argv[0],

3507 ActiveRatio, DangleRatio, LoopedRatio,

3508 AvgLen, Variance,

3509 NumOfBins, Hist,

3510 Time_k_Stress, Active_Stress, Dangle_Stress,

3511 AvgSpringLife_data,

3512 Dng2ActSum, Dng2LpdSum, Act2DngSum,

3513 Lpd2DngSum,

3514 DataFileName);

3515

3516 #else

3517

3518 OutputToFile( Spring_AvgLen_XX, Spring_AvgLen_XY, Spring_AvgLen_YY,

3519 TimeTrack, time_spent, k, argv[0],

3520 ActiveRatio, DangleRatio, LoopedRatio,

3521 AvgLen, Variance,

3522 NumOfBins, Hist,

3523 Time_k_Stress, Active_Stress, Dangle_Stress,

3524 AvgSpringLife_data,

3525 DataFileName);

3526 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

3527 #endif

3528

3529
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3530 /∗

3531 ∗ Memory freed in the order it was initialized.

3532 ∗

3533 ∗/

3534

3535

3536 CUDA_CALL(cudaFree(states));

3537 CUDA_CALL(cudaFree(ProbStates));

3538

3539

3540 free(hostSeeds);

3541 free(hostProbSeeds);

3542

3543

3544 CUDA_CALL(cudaFree(devSeeds));

3545 CUDA_CALL(cudaFree(devProbSeeds));

3546

3547 free(hostSpringLenX);

3548 free(hostSpringLenY);

3549 free(hostSpeciesType);

3550

3551 CUDA_CALL(cudaFree(devSpringLenX));

3552 CUDA_CALL(cudaFree(devSpringLenY));

3553 CUDA_CALL(cudaFree(devSpeciesType));

3554

3555

3556 free(hostSimTime);

3557 CUDA_CALL(cudaFree(devSimTime));

3558
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3559 free(Spring_AvgLen_XX);

3560 free(Spring_AvgLen_XY);

3561 free(Spring_AvgLen_YY);

3562

3563 free(ActiveRatio);

3564 free(DangleRatio);

3565 free(LoopedRatio);

3566

3567 free(Time_k_Stress);

3568 free(Active_Stress);

3569 free(Dangle_Stress);

3570

3571 free(AvgLen);

3572

3573 free(Variance);

3574

3575 free(AvgSpringLife_data);

3576

3577 for(int i=0; i<NumOfBins; i++)

3578 free(Hist[i]);

3579

3580 #ifdef SPEC_CHNG

3581

3582 free(hostDng2Act);

3583 free(hostDng2Lpd);

3584 free(hostAct2Dng);

3585 free(hostLpd2Dng);

3586

3587 CUDA_CALL(cudaFree(devDng2Act));
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3588 CUDA_CALL(cudaFree(devDng2Lpd));

3589 CUDA_CALL(cudaFree(devAct2Dng));

3590 CUDA_CALL(cudaFree(devLpd2Dng));

3591

3592 free(Dng2ActSum);

3593 free(Dng2LpdSum);

3594 free(Act2DngSum);

3595 free(Lpd2DngSum);

3596

3597 #endif

3598

3599 #ifdef SINGLE_MICRO

3600

3601 free(hostSCArr);

3602 CUDA_CALL(cudaFree(devSCArr));

3603

3604 #endif

3605 #ifdef MICRO_RAW

3606

3607 free(hostSCArr);

3608 CUDA_CALL(cudaFree(devSCArr));

3609

3610 #endif

3611

3612

3613

3614 free(hostAverageSpringLife);

3615 CUDA_CALL(cudaFree(devAverageSpringLife));

3616
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3617 free(TimeTrack);

3618

3619 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

3620

3621

3622 cudaDeviceReset();

3623

3624

3625 // __ stop computational clock ____

3626 end2 = clock();

3627 time_spent2 = double(end2−begin)/ CLOCKS_PER_SEC;

3628 printf("Runtime: %f\n\n", time_spent2);

3629 //‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

3630

3631

3632 return EXIT_SUCCESS;

3633

3634 }
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